Experts Mind

Live Experts 24x7

Operation Research | Sample Assignment | www.expertsmind.com

Problem: Solve the following LP problem graphically by enumerating the corner points.

$$
\begin{array}{ll}
\text { MAX: } & 3 X_{1}+4 X_{2} \\
\text { Subject to: } & X_{1} \leq 12 \\
& X_{2} \leq 10 \\
& 4 X_{1}+6 X_{2} \leq 72 \\
& X_{1}, X_{2} \geq 0
\end{array}
$$

Answer:

Since the problem is maximization. First we will draw constraints graphically

From first constraint

For $X_{1} \leq 12$, draw a line of $X_{1}=12$. (See Purple line in the graph)

For $X_{2} \leq 10$, draw a line of $X_{2}=10$ (See Blue line in the graph)

For $4 X_{1}+6 X_{2} \leq 72$, draw a line $4 X_{1}+6 X_{2}=72$ (see Brown line in the graph)

Feasible region is shown in the following graph
A

Thus corner points are $0(0,0), A(12,0), B(12,4), C(3,10)$ and $D(0,10)$. Note that $O(0,0)$ is intersection of $x 1=0, x 2=0, A(12,0)$ is intersection of $x 1=12, x 2=0$, $B(12,4)$ is intersection of $x 1=12,4 \times 1+6 \times 2=72$, it gives $(12,4), C(3,10)$ is intersection of $x 1=10,4 x 1+6 x 2=72$. and $D(0,10)$ is intersection of $x 1=0, x 2=10$.

At corner points, objective function will be
$O(0,0), \quad 3(0)+4(0)=0$
$A(12,0), 3(12)+4(0)=36$
$B(12,4), 3(12)+4(4)=52$
$C(3,10), 3(3)+4(10)=49$
$D(0,10), 3(0)+4(10)=40$
Thus we may see that at $B(12,4)$, value of objective function is maximum. Thus optimal solution is $(12,4)$ and maximize $=52$.

Experts Mind
Live Experts 24x7

