Exercise 3-40\%

Two firms, $i=1,2$, sell differentiated goods. The firms set prices p_{1} and p_{2} simultaneously. We assume that prices have to be non-negative, $p_{1}, p_{2} \geq 0$. The demand function facing firm i is given by

$$
q_{i}\left(p_{i}, p_{j}\right)=2-p_{i}+p_{j}
$$

(do not worry about negative demand when doing this exercise - in equilibrium demand will be positive).

Firm 1 can have low marginal cost, c_{L}, or high marginal cost, c_{H}, where $0<$ $c_{L}<c_{H}<2$. Firm 1 knows whether its marginal cost is low or high. Firm 2 only knows that the probability that Firm 1 has high marginal cost is θ, where $0<\theta<1$. Firm 2's marginal cost is $c=1$ and this is known by both firms. (All this is common knowledge for the firms).

1. Formulate the situation as a static game of incomplete information, i.e., specify action spaces, type spaces, beliefs, and payoff functions for the two firms.
2. Find the best response functions.
3. Find the Bayesian Nash equilibrium of the game (i.e., find the equilibrium prices).
4. Compare the BNE prices if Firm 1's realized cost is high with the equilibrium prices in the game where it is common knowledge that Firm 1 has high marginal $\operatorname{cost}\left(c_{H}\right)$.
5. Suppose now that Firm 1 does not observe its own marginal cost before it sets its price. I.e., Firm 1 only knows that the probability that it has high marginal $\operatorname{cost}\left(c_{H}\right)$ is θ. Everything else is as in the original set-up. Which equilibrium concept would you use to solve this game? Explain.

Game Theory Set III Sample Assignment Solution | www.expertsmind.com

Answer\# 1:

Given the demand function: $\mathrm{q}_{\mathrm{i}}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}\right)=2-\mathrm{p}_{\mathrm{i}}+\mathrm{p}_{\mathrm{j}}(\mathrm{i}=1,2$ and $\mathrm{i} \neq \mathrm{j})$
or, $\mathrm{p}_{\mathrm{i}}=2+\mathrm{p}_{\mathrm{j}}-\mathrm{q}_{\mathrm{i}} \rightarrow \mathrm{p}_{1}=2+\mathrm{p}_{\mathrm{j}}-\mathrm{q}_{1}$ and $\mathrm{p}_{2}=2+\mathrm{p}_{\mathrm{j}}-\mathrm{q}_{2}$
$\rightarrow R_{i}=$ Revenue of firm $i=p_{i} q_{i}=2 q_{i}+p_{j} q_{i}-q_{i}^{2}$
Thus $R_{1}=2 q_{1}+p_{j} q_{1}-q_{1}{ }^{2}=$ Revenue of $1^{\text {st }}$ firm,
and $R_{2}=2 q_{2}+p_{j} q_{2}-q_{2}{ }^{2}=$ Revenue of $2^{\text {nd }}$ firm.
According to the problem, firm: 2 only know that the probability of having high MC of firm: 1 is ' θ '.

So formally, $\mathrm{p}\left(\mathrm{c}_{\mathrm{H}}\right)=$ Probability of having high $\mathrm{MC}=\theta$ and
$\mathrm{p}\left(\mathrm{c}_{\mathrm{L}}\right)=$ Probability of having low $\mathrm{MC}=1-\theta$ where $\theta<1$.
Hence we can express $\mathrm{MC}_{1}=$ Marginal cost for firm: $1=\mathrm{p}\left(\mathrm{c}_{\mathrm{H}}\right) \cdot \mathrm{c}_{\mathrm{H}}+\mathrm{p}\left(\mathrm{c}_{\mathrm{L}}\right) \cdot \mathrm{c}_{\mathrm{L}}$

$$
=\theta \cdot c_{H}+(1-\theta) . c_{L}
$$

Now $\mathrm{MR}_{1}=$ Marginal revenue of 1 sirm $=2+\mathrm{p}_{j}-2 \mathrm{q}_{1}$? $H 2$
So the equilibrium condition $\mathrm{MR}_{1}=\mathrm{MC}_{1}$ gives us:

$$
\begin{align*}
& 2+p_{j}-2 q_{1}=1 \cdot c_{\mathrm{H}}+(\mathrm{T}-\theta) \cdot \mathrm{c}_{\mathrm{L}} \\
& \text { or, } 2+\mathrm{p}_{\mathrm{j}}-2 \mathrm{q}_{1}=\theta\left(\mathrm{c}_{\mathrm{H}}-\mathrm{c}_{\mathrm{L}}\right)+\mathrm{c}_{\mathrm{L}} \\
& \text { or, } 2 \mathrm{q}_{1}=2+\mathrm{p}_{\mathrm{j}}-\left[\theta\left(\mathrm{c}_{\mathrm{H}}-\mathrm{c}_{\mathrm{L}}\right)+\mathrm{c}_{\mathrm{L}}\right] \\
& \text { or, } \mathrm{q}_{1}=2+\mathrm{p}_{\mathrm{j}}-\left[\theta\left(\mathrm{c}_{\mathrm{H}}-\mathrm{c}_{\mathrm{L}}\right)+\mathrm{c}_{\mathrm{L}}\right] / 2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \tag{1}
\end{align*}
$$

Similarly, $\mathrm{MR}_{2}=$ Marginal revenue of $2^{\text {nd }}$ firm $=2+\mathrm{p}_{\mathrm{j}}-2 \mathrm{q}_{2}$
Given, $\mathrm{MC}_{2}=$ Marginal cost of firm: $2=\mathrm{c}=1$.
Hence the equilibrium condition $\mathrm{MR}_{2}=\mathrm{MC}_{2}$ gives us:

$$
\begin{align*}
& 2+p_{j}-2 q_{2}=1 \\
& \text { or, } 2 q_{2}=1+p_{j} \\
& \text { or, } q_{2}=1+p_{j} / 2 . \tag{2}
\end{align*}
$$

Equations: (1) and (2) show the situations of static game of incomplete information.

The payoff of $1^{\text {st }}$ firm: $S_{1}(\theta)=0$ and the payoff of $2^{\text {nd }}$ firm: $S_{2}(\theta)=1$.

Answer\# 2:

According to equation: (1) we have:

$$
\mathrm{q}_{1}=2+\mathrm{p}_{\mathrm{j}}-\left[\theta\left(\mathrm{c}_{\mathrm{H}}-\mathrm{c}_{\mathrm{L}}\right)+\mathrm{c}_{\mathrm{L}}\right] / 2
$$

or, $\mathrm{q}_{1}=\left[\left(1+\mathrm{p}_{\mathrm{j}}\right)+1-\theta\left(\mathrm{c}_{\mathrm{H}}-\mathrm{c}_{\mathrm{L}}\right)-\mathrm{c}_{\mathrm{L}}\right] / 2$
or, $\mathrm{q}_{1}=\left[\left(1+\mathrm{p}_{\mathrm{j}}\right) / 2\right]+\left[1-\theta\left(\mathrm{c}_{\mathrm{H}}-\mathrm{c}_{\mathrm{L}}\right)-\mathrm{c}_{\mathrm{L}} / 2\right]$
We know that: $\left(1+\mathrm{p}_{\mathrm{j}}\right) / 2=\mathrm{q}_{2}$. So substituting the value of q_{2} in equation: (3) we get:
$\mathrm{q}_{1}{ }^{*}=\mathrm{q}_{2}{ }^{*}+\left[1-\theta\left(\mathrm{c}_{\mathrm{H}}-\mathrm{c}_{\mathrm{L}}\right)-\mathrm{c}_{\mathrm{L}} / 2\right]=\mathrm{q}_{2}{ }^{*}+\rho\left(\mathrm{c}_{\mathrm{H}}, \mathrm{c}_{\mathrm{L}}\right)$
where $\mathrm{q}_{1}{ }^{*}=$ Equilibrium demand function for $1^{\text {st }}$ firm

$$
=\text { Response function for } 1^{s t} \text { firm as a function of } \mathrm{q}_{2} \text { with } \rho^{\prime}\left(\mathrm{c}_{\mathrm{H}}\right)>0, \rho^{\prime}\left(\mathrm{c}_{\mathrm{L}}\right)<
$$

0.

And $\mathrm{q}_{2}{ }^{*}=\mathrm{q}_{1}{ }^{*}-\rho\left(\mathrm{c}_{\mathrm{H}}, \mathrm{c}_{\mathrm{L}}\right) \rightarrow$ Response function for $2^{\text {nd }}$ firm as a function of q_{1} Experts.Mind
According to the problem, we have: $0<\mathrm{c}_{\mathrm{L}}<\mathrm{c}_{\mathrm{H}}<2$ and $0<\theta<1$.
Now for the sake of simplicity, let us take an example that $\theta=0.5, c_{\mathrm{L}}=0.5$ and c_{H} 1.

Thus putting the values of $\mathrm{c}_{\mathrm{L}}, \mathrm{c}_{\mathrm{H}}$, and θ in equation: (4) we get:

$$
\mathrm{q}_{1}{ }^{*}=\mathrm{q}_{2}{ }^{*}+[(1-0.25-0.5) / 2]=\mathrm{q}_{2}{ }^{*}+0.125-\text { which is a simplified }
$$

response

function for firm: 1 with known values of the variables.
In a similar fashion, we can derive the simplified response function for the $2^{\text {nd }}$ firm with known values of the variables $\mathrm{c}_{\mathrm{L}}, \mathrm{c}_{\mathrm{H}}$, and θ.

However the two equilibrium values of q_{1} and q_{2} will become equal when

$$
\begin{aligned}
& 1-\theta\left(c_{H}-c_{L}\right)-c_{L} / 2=0 \\
& \text { or, } 1-\theta\left(c_{H}-c_{L}\right)-c_{L}=0 \\
& \text { or, } \theta\left(c_{H}-c_{L}\right)=1-c_{L} \rightarrow \theta=\left(\mathbf{1}-\mathbf{c}_{\mathrm{L}}\right) /\left(\mathbf{c}_{\mathbf{H}}-\mathbf{c}_{\mathrm{L}}\right)
\end{aligned}
$$

In other words, $\mathrm{q}_{1}{ }^{*}=\mathrm{q}_{2}{ }^{*}$ when $\theta=\left(1-\mathrm{c}_{\mathrm{L}}\right) /\left(\mathrm{c}_{\mathrm{H}}-\mathrm{c}_{\mathrm{L}}\right)$ - which contemplates the situation of a static game with complete information about the market (Pure Strategy Nash Equilibrium solution).

Answer\# 3:

From our previous discussion, we have:

$$
\mathrm{p}_{1}=2+\mathrm{p}_{\mathrm{j}}-\mathrm{q}_{1} \text { and } \mathrm{p}_{2}=2+\mathrm{p}_{\mathrm{j}}-\mathrm{q}_{2}
$$

Therefore, $\mathrm{p}_{1}=2+\mathrm{p}_{\mathrm{j}}-\left[2+\mathrm{p}_{\mathrm{j}}-\left\{\theta\left(\mathrm{c}_{\mathrm{H}}-\mathrm{c}_{\mathrm{L}}\right)+\mathrm{c}_{\mathrm{L}}\right\}\right] / 2$

$$
\begin{array}{r}
\text { as } q_{1}=\left[2+p_{j}-\left\{\theta\left(c_{H}-c_{L}\right)+c_{L}\right\}\right] / 2 \\
\text { or, } p_{1}=4+2 p_{j}-\left[2+p_{j}-\left\{\theta\left(c_{H}-c_{L}\right)+c_{L}\right\}\right] / 2 \\
\text { or, } p_{1}{ }^{*}=2+p_{j}+\theta\left(c_{H}-c_{L}\right)-c_{L} / 2 \ldots \ldots \ldots \ldots \ldots . . \tag{5}
\end{array}
$$

Similarly,

$$
\mathrm{p}_{2}=2+\mathrm{p}_{\mathrm{j}}-\mathrm{q}_{2}
$$

or, $\mathrm{p}_{2}=2+\mathrm{p}_{\mathrm{j}}-\left(1+\mathrm{p}_{\mathrm{j}} / 2\right)$ [Since $\left.\mathrm{q}_{2}=\left(1+\mathrm{p}_{\mathrm{j}}\right) / 2\right]$
or, $\left.\mathrm{p}_{2}^{*}=\left(3+\mathrm{p}_{\mathrm{j}}\right) / 22^{+}, \tan \right)^{(6)}$
Equations: (5) and (6) are the Bayesian Nash Equilibrium (BNE) of the game,
One important factor has to be noted in thisegard Sinceltsinhls equilibriumprifer
(p_{1}^{*}) depends upon the stochastic model, hence as the probability of higher marginal cest (MC) increases, so does the value of $p_{1}{ }^{*}$.

In other words, $\mathrm{p}_{1}{ }^{*}=\mathrm{f}\left(\mathrm{p}_{\mathrm{j}}, \omega\right)$ with $\mathrm{f}^{\prime}\left(\mathrm{p}_{\mathrm{j}}\right), \mathrm{f}^{\prime}(\omega)>0$.
[Where $\omega=\theta\left(c_{H}-c_{L}\right)-c_{L}$]
Similarly, $\mathrm{p}_{2}{ }^{*}=\mathrm{g}\left(\mathrm{p}_{\mathrm{j}}\right)$ with $\mathrm{g}^{\prime}>0$.
The major difference between the two equilibrium prices of two firms is that the equilibrium price of the $1^{\text {st }}$ firm not only depends upon ' p_{j} ' (price charged by firm j) but also on the expectations of the difference between high and low marginal costs.

On the other hand, as the MC of the $2^{\text {nd }}$ firm is already known, hence the equilibrium price of the $2^{\text {nd }}$ firm will depend only on ' p_{j} ' (price charged by firm j).

Answer\# 4:

Let $\mathrm{c}_{1}=\mathrm{MC}_{1}=$ Marginal cost for firm: $1=\theta \cdot \mathrm{c}_{\mathrm{H}}+(1-\theta) . \mathrm{c}_{\mathrm{L}}$

The equilibrium condition $\mathrm{MR}_{1}=\mathrm{MC}_{1}$ gives us:

$$
\begin{array}{r}
2+\mathrm{p}_{\mathrm{j}}-2 \mathrm{q}_{1}=\mathrm{c}_{1} \\
\text { or, } \mathrm{dC}_{1} / \mathrm{dq}_{1}=2+\mathrm{p}_{\mathrm{j}}-2 \mathrm{q}_{1} \\
\text { or, } \mathrm{dC}_{1}=\left(2+\mathrm{p}_{\mathrm{j}}-2 \mathrm{q}_{1}\right) \mathrm{dq}_{1}
\end{array}
$$

Now integrating both sides we get:

$$
\begin{aligned}
& \int \mathrm{dC}_{1}=2 \int \mathrm{dq}_{1}+\mathrm{p}_{\mathrm{j}} \int \mathrm{dq}_{1}-\mathrm{q}_{1}^{2}+\mathrm{F} \\
& \text { or, } \mathrm{C}_{1}=2 \mathrm{q}_{1}+\mathrm{p}_{\mathrm{j}} \mathrm{q}_{1}-\mathrm{q}_{1}^{2}+\mathrm{F}=\text { Cost of production for } 1^{\text {st }} \text { firm } \\
& \text { where } \mathrm{F}=\text { Fixed cost (Constant of integration). }
\end{aligned}
$$

Now we know that $\mathrm{p}_{1}{ }^{*}=2+\mathrm{p}_{\mathrm{j}}+\theta\left(\mathrm{c}_{\mathrm{H}}-\mathrm{c}_{\mathrm{L}}\right)-\mathrm{c}_{\mathrm{L}} / 2$ and

$$
\left.\mathrm{p}_{2}^{*}=\left(3+\mathrm{p}_{\mathrm{j}}\right) / 2 \text { (From equations: } 5 \text { and } 6\right) .
$$

Hence when firm: 1 has a high c_{H}, given the value of p_{j}, the equilibrium price ($\mathrm{p}_{1}{ }^{*}$) will increase which in turn will effect on its output $\left(\mathrm{q}_{1}\right)$.

Formally, we have: $c_{1}=\theta \cdot c_{H}+(1-\theta) . c_{L}=\theta\left(c_{H}-c_{L}\right)+c_{L}$
Thus by a bit of manipulation, we can write: $1 / 1714$

$$
\begin{aligned}
& \mathrm{p}_{1}{ }^{*}=2+\mathrm{p}_{\mathrm{j}}+\left\{\theta\left(\mathrm{c}_{\mathrm{H}}-\mathrm{c}_{\mathrm{L}}\right)+\mathrm{c}_{\mathrm{L}}\right\}-2 \mathrm{c}_{\mathrm{L}} / 2 \\
& \mathrm{p}_{1}^{*}=2+\mathrm{p}_{\mathrm{j}}+\mathrm{c}_{1}-2 \mathrm{c}_{\mathrm{L}} / 2 \text { E. ExPMETS } 24 x 7
\end{aligned}
$$

Equation: (7) shows the relationship between BNE price and the marginal cost for firm: 1.

Answer\# 5:

We already have as per equation (7):

$$
\mathrm{p}_{1}{ }^{*}=2+\mathrm{p}_{\mathrm{j}}+\mathrm{c}_{1}-2 \mathrm{c}_{\mathrm{L}} / 2
$$

Now according to the problem, if firm: 1 does not know about ' c_{1} ' and ' c_{L} '; then we may hold

$$
\mathrm{c}_{1}=\mathrm{c}_{\mathrm{L}}=0 \text { which simplifies equation: (8) into: } \mathrm{p}_{1}{ }^{*}=\left(2+\mathrm{p}_{\mathrm{j}}\right) / 2 .
$$

In this case, firm: 1 has to set its equilibrium price based on the price charged by firm $\mathrm{j}\left(\mathrm{p}_{\mathrm{j}}\right)$.

Thus in this method (equilibrium concept), the $1^{\text {st }}$ firm would be able to solve the game for Bayesian Nash Equilibrium (BNE).

