

Theory of Computation TOC | Sample Assignment | www.expertsmind.com

- **Problem 2.** Fix a DFA $M=(Q,\Sigma,\delta,q_0,F)$. For any two states $q,q'\in Q$, let us say that q and q' are equivalent, written $q\sim q'$, if, for all $w\in \Sigma^*$ we have that $\delta^*(q,w)\in F\Leftrightarrow \delta^*(q',w)\in F$. Here δ^* is the extension of δ to Σ^* defined by $\delta^*(q,\varepsilon)=q$ and $\delta^*(q,ax)=\delta^*(\delta(q,a),x)$.
- (a) Prove that \sim is an equivalence relation.
- (b) Suppose that $q \sim q'$ for distinct q, q'. Describe, first in plain English and then in precise mathematical terms, how to construct a smaller (=fewer state) DFA M' that accepts the same language as M.
- **Problem 4.** Give DFAs for the following languages. Assume an alphabet that includes all and only the mentioned symbols. Make your DFA as small as possible.
- (a) The set of all strings that have abba as a substring.
- (b) The set of all strings that do not have abba as a substring.

Answer 2a. DFA M=(Q, Σ , δ , q₀,F).for any two states q,q'EQ, q \approx q' \(\forall w \epsilon \Sigma^*(q, w) \leftrightarrow \delta^*(q', w) \) where \(\delta^*(q,e) = q \text{ and } \delta^*(q,ax) = \delta^*(\delta(q,a),x) \) A relation is \approx is equivalence if

- (i) It is reflexive i.e. $x \equiv x$
- (ii) It is symmetric ie $x \equiv y \implies y \equiv x$
- (iii) It is transitive ie $x \equiv y \land y \equiv z = >x \equiv z$

$$\forall w \in \Sigma \ \delta(q, w) \equiv \delta(q', w)$$

$$\Leftrightarrow \forall a \in \Sigma \ \forall x \in \Sigma^* : \delta^*(\delta(q, a), x) \in F \equiv \delta^*(\delta(q', a), x) \in F$$

$$\Leftrightarrow \forall a \in \Sigma \ \forall x \in \Sigma^* : \delta^*(q, ax) \in F \equiv \delta^*(q', ax) \in F$$

$$\Leftrightarrow \forall w' \in \Sigma^* : \delta^*(q, w') \in F \equiv \delta^*(q', w') \in F$$

$$\Leftrightarrow q \equiv q'$$

2b. state diagram for $\ M{=}(Q,\!\Sigma,\!\delta,\,q_0{,}F)$

		•			٠,
ഥ	[0]	{q	ıΛ	a	2,
19	ıνı	lΥ	ις,	м	ر ـ

$$[q_1] = \{q_1, q_3\}$$

$$[q_4] = \{q_4\}$$

	q_0	q_1	q_2	q_3	q_4
0	-	F	-	F	F
1	-	-	-	-	F
00	F	F	F	F	F
01	-	F	-	F	F
10	-	-	-	-	F
11	ı	ı	-	1	F
000	F	F	F	F	F
001	F	F	F	F	F
010	ı	F	-	F	F
011	-	F	-	F	F
100	F	F	F	F	F
101	-	-	-	-	F

state diagram for M' q_0 q_2 q_2 q_3 q_4 q_2 q_4 q_2 q_3

4(a) set of all strings that have abba as substring.

4(b) set of all strings that do not have abba as substring.

