

Sample Math Homework | Sample Assignment | www.expertsmind.com

Question 1

Integrate the following functions, or solve the given ODE.

(a)
$$f(x) = \cos(\ln(x))$$

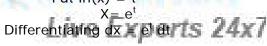
(b)
$$\frac{dy}{dx} = \frac{1}{3 + 5\cos(x)}$$
 (Hint: use *t* substitution.)

(c)
$$\frac{dy}{dx} = \sqrt{x^2 - 8x - 9}$$
 (Hint: think of using an hyperbolic substitution instead of trigonometric.)

Solution:

(a) f(x) = Cos(ln(x))

 $I = \int Cos(In(x)) dx$



I= coste^tdt

Integrating by parts we get

$$\int u dv = uv - \int v du$$

$$dv = e^t dt$$

$$V=e^{t}$$

$$du = -\sin t dt$$

$$I = e^t cost - \int e^t (-sint) dt$$

$$I = e^t cost + \int e^t (sint) dt$$

Further integrating by parts we get

$$dv = e^t dt$$
 $u = sint$
 $V = e^t$ $du = Cost dt$

$$I = e^t cost + e^t sint - \int e^t (cost) dt$$

$$I = e^t \cos t + e^t \sin t - I$$

 $2I = e^t \cos t + e^t \sin t$

$$I = \frac{1}{2} [e^t cost + e^t sint]$$

$$I = \frac{1}{2} [e^{\ln(x)} \cos(\ln(x)) + e^{\ln(x)} \sin(\ln(x))]$$

$$I = \frac{1}{2}[x \cos(\ln(x)) + x\sin(\ln(x))]$$

$$I = \frac{x}{2} \left[\cos(\ln(x)) + \sin(\ln(x)) \right] + C$$

(b)
$$\frac{dy}{dx} = \frac{1}{3 + 5\cos(x)}$$

$$y = \int \frac{dx}{3 + 5\cos(x)}$$

$$y = \int \frac{dx}{3 + 5 \left[\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right]}$$

$$y = \int \frac{\left[1 + \tan^2 \frac{x}{2}\right] dx}{3 + 3\tan^2 \frac{x}{2} + 5 - 5\tan^2 \frac{x}{2}}$$

$$y = \int \frac{\operatorname{Sec}^2 \frac{x}{2} dx}{8 - 2\tan^2 \frac{x}{2}}$$

$$y = \int \frac{\operatorname{Sec}^2 \frac{x}{2} dx}{\sqrt{1 + \frac{x}{2} + \frac{x}{2}}}$$

$$\frac{1}{2}\operatorname{Sec}^2\frac{x}{2}dx = dt$$

$$y = \int \frac{dt}{dt}$$

 $y = \int \frac{\sec^2 \frac{x}{2} dx}{2 \left[4 - \tan^2 \frac{x}{2} \right]}$ $\frac{1}{2} \sec^2 \frac{x}{2} dx = dt$ Live Experts 24x7

$$y = \frac{1}{4} \int \frac{2 - t + 2 + t}{(2 - t)(2 + t)} dt = \frac{1}{4} \left[\int \frac{dt}{2 - t} + \int \frac{dt}{2 + t} \right] = \frac{1}{4} \ln \frac{2 + t}{2 - t} = \frac{1}{4} \ln \frac{2 + \tan \frac{x}{2}}{2 - \tan \frac{x}{2}} + c$$

(c)
$$\frac{dy}{dx} = \sqrt{x^2 - 8x - 9}$$

$$\frac{dy}{dx} = \sqrt{x^2 - 8x + 16 - 16 - 9}$$

$$\frac{dy}{dx} = \sqrt{(x-4)^2 - 25}$$

$$y = \int \sqrt{(x-4)^2 - 25} dx$$

Put x-4=5 coshu

Differentiating $dx = 5 \sinh u du$

$$y = \int \sqrt{25 cosh^2 u - 25} \ 5 sinhudu = \int 25 sinh^2 u du$$

$$\begin{split} y &= \int 25 \Bigg[\frac{e^u - e^{-u}}{2} \Bigg]^2 du = \frac{25}{4} \int \left[e^{2u} + e^{-2u} - 2 \right] du = \frac{25}{8} \left[e^{2u} - e^{-2u} - 4u \right] \\ y &= \frac{25}{8} \left[\left(e^u - e^{-u} \right) \left(e^u + e^{-u} \right) - 4u \right] \\ y &= \frac{25}{8} \left[4 sinhucoshu - 4u \right] = \frac{25}{2} \left[\frac{x - 4}{5} \frac{\sqrt{x^2 - 8x - 9}}{5} - cosh^{-1} \frac{x - 4}{5} \right] + c \end{split}$$

Question 2

- (a) Find $\int u \cosh(u) du$.
- (b) Solve the ODE $\frac{dy}{dx} + \frac{y}{x+2} = (x^2+4)\cosh(x^2+4)$.
- (c) A child's toy is to be made from the region contained between the curve $y = x \cosh(x)$, $-\pi \le x \le \pi$ and the x axis, mounted upon a stick so it can revolve in the breeze. The region will be cut out from a thin sheet of density ρ .
 - 1) Use MATLAB to generate a plot of the region concerned.
 - 2) Find the mass of the blade.
 - 3) State where you expect the centre of mass of this shape to be, using your understanding of centre of mass. Confirm this by making a calculation for the *x* coordinate of the centre of mass only.

V= sinhu

Solution: (a)

I= ∫ucoshudu

dt = du

afor

$$\int t dv = tv - \int v dt$$

$$= usinhu - \int sinhudu$$

$$= usinhu - coshu + c$$

(b)
$$\frac{dy}{dx} + \frac{y}{x+2} = (x^2 + 4) Cosh(x^2 + 4)$$

This is a linear differential equation.

$$P = \frac{1}{x+2}$$
 and $Q = (x^2 + 4)Cosh(x^2 + 4)$

Integrating factor is

$$e^{\int pdx} = e^{\int \frac{dx}{x+2}} = e^{\ln(x+2)} = (x+2)$$

Multiplying the given ODE by the integrating factor we get

$$(x+2)\frac{dy}{dx} + y = (x+2)(x^2+4)Cosh(x^2+4)$$

$$\frac{d(x+2)y}{dx} = (x+2)(x^2+4)Cosh(x^2+4)$$

Integrating on both sides

$$Y(x+2) = \int (x+2)(x^2+4) Cosh(x^2+4) dx = \int x(x^2+4) Cosh(x^2+4) dx = I_1 + I_2$$

In the first integral Put $(x^2+4) = t$ differentiating we get 2x dx = dt then it gets transformed to

$$I_1 = \frac{1}{2} \int t cosht dt = \frac{1}{2} \{ t sinht - cosht \} + C = \frac{1}{2} \{ (x^2 + 4) Sinh (x^2 + 4) - cosh(x^2 + 4) \} + C$$

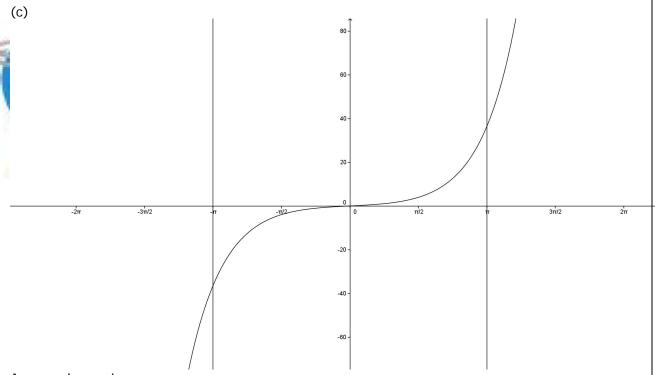
 ${\rm I}_{\rm 2}$ is not a standard integral. This has to be done by series method.

We know that Coshu= $\frac{e^u - e^{-u}}{2} = 1 + \frac{u^2}{2*} + \frac{u^4}{4*} \dots$, where * stands for factorial of a number.

In our case $u = x^2 + 4$, replacing we get = Cosh $(x^2 + 4) + \frac{(x^2 + 4)^2}{2*} + \frac{(x^2 + 4)^4}{4*} \dots$

 $I_2 = \int 1 + \frac{(x^2 + 4)^3}{2*} + \frac{(x^2 + 4)^5}{4*} \dots dx$ expanding and integrating we get

$$I_2 = x + \frac{1}{2} \left[\frac{x^7}{7} + \frac{12x^5}{5} + 24x^2 + 64x \right] \dots$$



Area under region

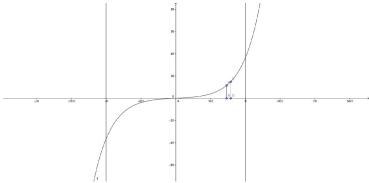
 $\int_{-\pi}^{\pi} x \cosh x \, dx = 2 \int_{0}^{\pi} x \cosh x \, dx$ due to its symmetry about y- axis.

=
$$2[x\sinh x - \cosh x]_0^{\pi} = 2[\pi \sinh \pi - \cosh \pi + 1]$$

If the area density of the sheet is ρ , then the mass of the blade is $2\rho[\pi sinh\pi-cosh\pi+1]$.

Center of mass

Consider a thin strip of thickness dx at a distance of x from the origin as shown in the figure



Mass of the strip is ρxcosh(x)dx

Then the center of mass=
$$\frac{\int_{-\pi}^{\pi} x^2 \cosh x \, dx}{M} = \frac{\left[x^2 \text{Sinhx} - 2x \cosh x - 2 \sinh x\right]_{-\pi}^{\pi}}{M}$$
 (On

integrating by Parts successively)

Center of mass = 0 as the numerator vanishes. The center of mass lies at the origin which is true from its symmetry.

Question 3

- (a) By reducing the second order ODE to a system of two first order ODE's, the general solution to $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 4y = 0$. Find the eigenvectors and eigenvalues by hand and check them using MATLAB.
- (b) Find any solution to the non-homogeneous ODE $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 4y = e^x + 4x$

Solution: (a)
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4 = 0$$

Auxiliary equation: $m^2 - 4m + 4 = 0$; $(m-2)^2 = 0$; m=2 the roots are real and equal.

Hence $y=(Ax+B)e^{2x}$

Eigen vectors:

Eigen values:

(b)
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4 = e^x + 4x$$

Auxiliary equation: $m^2 - 4m + 4 = 0$; $(m-2)^2 = 0$; m=2 the roots are real and equal.

Hence

General solution: $y=(Ax + B)e^{2x}$

Particular Integral:

$$PI = \frac{e^{x} + 4x}{D^{2} - 4D + 4} = \frac{e^{x}}{D^{2} - 4D + 4} + \frac{4x}{D^{2} - 4D + 4} = \frac{e^{x}}{(1)^{2} - 4(1) + 4} + \frac{4x}{4(1 - D + D^{2} / 4)}$$

$$=e^{x} + (1-D+D^{2}/4)^{-1}(x) = e^{x} + (x+1)$$

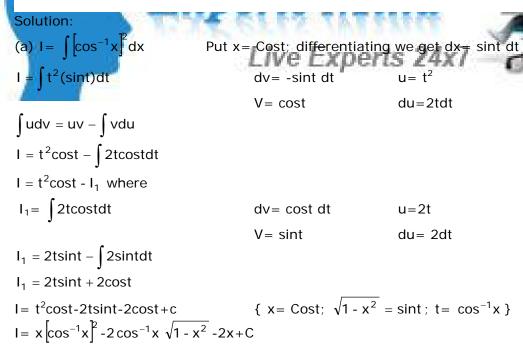
Hence Y= GS+PI= y=(Ax +B)e^{2x} + e^x + (x+1)

(c) Use the initial conditions y(0) = 3, $\frac{dy}{dx}\Big|_{x=0} = 6$ to find the unknown constants hence find the solution satisfying these conditions.

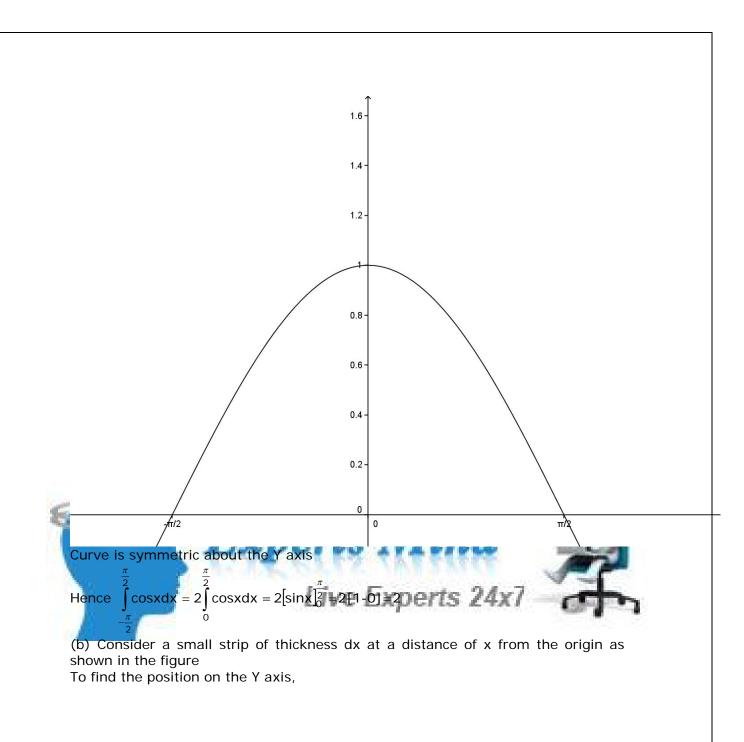
$$Y(0) = 3$$
; hence $3=B+2$; $B=1$
 $Y'= (Ax+B) 2 e^{2x} + A e^{2x} + e^{x} + 1$
At $x=0$ $Y'=6$
 $6= 2B + A + 2$; $A= 2$
Substituting the values of A and B in $Y= (Ax + B)e^{2x} + e^{x} + (x+1)$; we get $Y= (2x+1)e^{2x} + e^{x} + (x+1)$

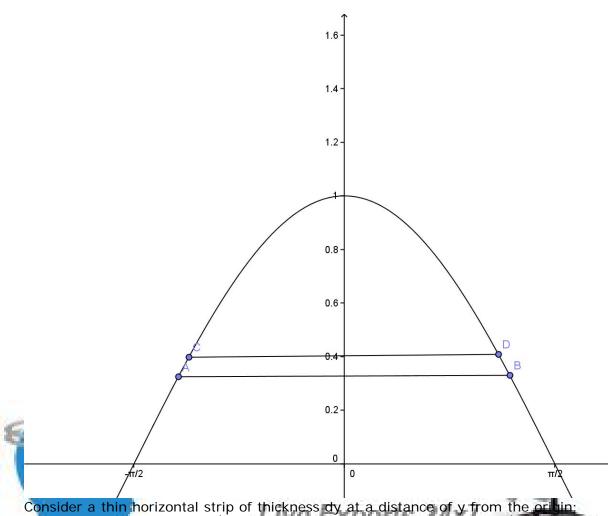
Question 4

- (a) Find the integral of $(\cos^{-1}(x))^2$, using integration by parts.
- (b) Consider the region between the curve $y = \cos(x), \frac{-\pi}{2} \le x \le \frac{\pi}{2}$ and the x
 - 1) Find the area of this region.
 - 2) Assuming a density of ρ , find the centre of mass. You may assume the x coordinate of the centre of mass occurs on the vertical axis.



(b) Trace of the given curve





Consider a thin horizontal strip of thickness dy at a distance of y from the origin the area of the strip is 2cos ⁻¹ydy. Hence the mass of the strip is p2cos ⁻¹ydy.

Center of mass =
$$\frac{\int_{0}^{1} \rho 2y \cos^{-1} y dy}{M} = \frac{\int_{0}^{1} \rho 2y \cos^{-1} y dy}{2\rho} = \int_{0}^{1} y \cos^{-1} y dy = .$$
 Integrating by

parts we get After substituting y = cost we get

$$\int_{0}^{1} y \cos^{-1} y dy = \int_{0}^{\frac{\pi}{2}} cost \ sint \ tdt = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} t sin2t dt = \frac{1}{8} \left[-2t cos2t + sin2t \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{8}$$

Hence the center of mass of the strip is $(0, \frac{\pi}{8})$

