Y=θ[SIN(INθ)+COS(INθ)],THEN FIND dy÷dθ.
Solution) Y=θ[SIN(INθ)+COS(INθ)]applying u.v rulethen dy÷dθ={[ SIN(INθ)+COS(INθ) ] dθ÷dθ }+ {θ[ d÷dθ{SIN(INθ)+COS(INθ) ] } => SIN(INθ)+COS(INθ) + θ{ (COS(INθ)÷ θ) - (SIN(INθ)÷θ) } θ is canceled and sin(ln θ ) is also canceled then u will get => 2COS(INθ)
y=Θ[sin(lnΘ)+cos(lnΘ)]
dy/dΘ=[sin(lnΘ)+cos(lnΘ)] + Θ[cos(lnΘ)-sin(lnΘ)]*1/Θ ---->(Use Multiplication rule)
dy/dΘ=2cosΘ.