Working principle of a d.c. generator, Electrical Engineering

Q. Explain the working principle of a d.c. generator. Explain clearly the function of commutator in d.c. machines.

Sol. Working principle of a D.C. generator: For the 2- poles d.c. machine, one full pitched N - turn coil.

One copper ring is split into two portions, which are insulted from each other and also from the shaft on which these are mounted. The two ends of the coil are connected to those two copper segments, on which two stationary carbon brushes are resting under suitable spring pressure. For an actual d.c. machine, there are a large no. of coils and accordingly a copper ring will have to be cut in a large no. of copper segments. These copper segments as a whole are called a commutator.

 

For understanding the process of rectification by means of commutator, consider end view of the coil, seen from the commutator side. The variation of field flux density along the air gap periphery is depicted. For the present, only fundamental sine component  of the flux - density wave is considered. The rotor is assumed to revolve at a clockwise speed of wr rad/ second. For the position of the coil, the emf induced in a, a' is zero, since the instantaneous velocity of the coil is parallel to the magnetic flux and the rate of flux cutting is zero. After 90o travel of the coil, the emf induced is maximum, since each coil side lies in the peak of flux density wave and the rate of flux - cutting is maximum.

 

The direction of emf in coil side a - a', as determined by right - hand rule, is indicated by dot and cross respectively. Further coil a and a' are connected via the commutator segment to brushes B1 and B2 respectively. If output terminals are connected to the load, current comes out from brush B1 and enters at brush B2.

 

In the positive, the emf induced is zero and after further travel of 90o, the emf induced in the coil is maximum, but of reversed polarity, the brushes B1 is in contact with coil side a which is under south pole, again the brush B1 is in contact with that coil - side which comes under the north - pole. Consequently the polarities if the brushes B1 and B2 remain positive and negative. The emf induced in the coil is alternating but the voltage available across the brushes B1 and B2 is unidirectional.

Posted Date: 7/23/2012 1:42:11 AM | Location : United States







Related Discussions:- Working principle of a d.c. generator, Assignment Help, Ask Question on Working principle of a d.c. generator, Get Answer, Expert's Help, Working principle of a d.c. generator Discussions

Write discussion on Working principle of a d.c. generator
Your posts are moderated
Related Questions
Q. A current i(t) = 20 cos(2π × 60)t A fows through a wire. Find the charge flowing, and the number of electrons per second that are passing some point in the wire.

Issue In Sub-Transmission and Distribution Systems The major issue in Sub-transmission and Distribution systems or rather the issue confronting the power sector as an overall,

Q. Design a water supply scheme for a station, adopting the following data - a) Source of water - River flow at a distance of 1 km. b) Requirement of water - 1 lack gallons p

A circuit realization of a NAND gate will now be developed. By connecting NAND gates together in various ways, one can synthesize other gates and flip-flops. Thus in principle, a s


Q. The coil is placed so that its axis of revolution is perpendicular to a uniform field, as shown in Figure If the flux per pole is 0.02 Wb, and the coil, consisting of 2 turns, i

Data Copy Operations Instructions which  are used  to copy data from  one location to another  location kept in  this category. The location from  which data  is copied  is cal

Q. A transistor in a fixed bias amplifier circuit was replaced by another transistor of beta equaling 150 instead of 60.if IB of transistor is equal to 100 microampere and collecto

The Thevenin equivalent circuit at the terminals of R2 / S for a 60 hz, 6 pole induction motor is shown below. a) Find the value of the slip for maximum torque and the maximum t

Q. A transformer has its maximum efficiency of 0.9800 when it delivers 15 kVA at unity power factor. During the day it is loaded as follows: 12 hours 2 kW at power factor 0.5