White''s general heteroscedasticity test, Advanced Statistics

The Null Hypothesis - H0:  γ1 = γ2 = ...  =  0  i.e.  there is no heteroscedasticity in the model

The Alternative Hypothesis - H1:  at least one of the γi's are not equal to zero i.e. the squared residuals are related to one of the independent variables.

Reject H0 if nR2   >   2094_Tests for Heteroscedasticity.png

Regression Analysis: sqresi versus totexp, age, ...

* sqnk is highly correlated with other X variables

* sqnk has been removed from the equation.

 

The regression equation is

sqresi = 0.00086 - 0.000117 totexp + 0.000765 age + 0.00007 nk

         + 0.000000 sqtotexp - 0.000009 sqage + 0.000000 totexpage

         + 0.000026 totexpnk - 0.000077 agenk

 

Predictor         Coef     SE Coef      T      P     VIF

Constant      0.000857    0.007288   0.12  0.906

totexp     -0.00011676  0.00004906  -2.38  0.017  49.148

age          0.0007649   0.0003256   2.35  0.019  73.466

nk            0.000072    0.002941   0.02  0.980  24.250

sqtotexp    0.00000019  0.00000010   2.00  0.045  13.958

sqage      -0.00000879  0.00000394  -2.23  0.026  62.515

totexpage   0.00000021  0.00000097   0.21  0.831  37.830

totexpnk    0.00002598  0.00001464   1.77  0.076  18.920

agenk      -0.00007694  0.00007905  -0.97  0.331  32.566

S = 0.0112807   R-Sq = 1.2%   R-Sq(adj) = 0.6%

 

Analysis of Variance

Source            DF         SS         MS     F      P

Regression         8  0.0022313  0.0002789  2.19  0.026

Residual Error  1493  0.1899897  0.0001273

  Lack of Fit    639  0.0804237  0.0001259  0.98  0.601

  Pure Error     854  0.1095659  0.0001283

Total           1501  0.1922209

 

 332 rows with no replicates

Source     DF     Seq SS

totexp      1  0.0006642

age         1  0.0000000

nk          1  0.0000026

sqtotexp    1  0.0005240

sqage       1  0.0005895

totexpage   1  0.0000013

totexpnk    1  0.0003292

agenk       1  0.0001206

 

MTB > let k4=1502*0.012

MTB > print k4

Data Display

K4    18.0240

Inverse Cumulative Distribution Function

Chi-Square with 8 DF

P( X <= x )        x

       0.95  15.5073

Since nrsq = (1502*0.012) 18.024 > 15.5073 = 2094_Tests for Heteroscedasticity.png, there is sufficient evidence to reject H0 which suggests that there is heteroscedasticity in the model from White's general heteroscedasticity test at the 5% significance level.  Both Breusch Pagan test and White's general heteroscedasticity test seem to indicate that totexp is the culprit as the T value is significant and the P-value is 0.000.

Posted Date: 3/5/2013 6:04:19 AM | Location : United States







Related Discussions:- White''s general heteroscedasticity test, Assignment Help, Ask Question on White''s general heteroscedasticity test, Get Answer, Expert's Help, White''s general heteroscedasticity test Discussions

Write discussion on White''s general heteroscedasticity test
Your posts are moderated
Related Questions
The regression analysis is used to fit a model describing the relationship of a dependent variable with independent variable(s). Here we have fitted three regression models:

Response surface methodology (RSM): The collection of the statistical and mathematical methods useful for improving, developing, and optimizing processes with significant applicat

Probabilistic matching is a method developed to maximize the accuracy of the linkage decisions based on the level of agreement and disagreement among the identifiers on different

Non-randomized clinical trial is the clinical trial in which the series of consecutive patients receive a new treatment and those which respond (according to some of the pre-defin

cholscores Treatment income ($000) Patient ID low Income? 0.6 Old 21.3 2 Yes 0.17 Old 27.2 13 Yes 0.69 New 27.1 16 Yes 1.09 Old 94.8

Artificial neural network : A mathematical arrangement modelled on the human neural network and designed to attack various statistical problems, particularly in the region of patte

Procedures for estimating the probability distributions without supposing any particular functional form. Constructing the histogram is perhaps the easiest example of such type of

Cauchy integral : The integral of the function, f (x), from a to b are de?ned in terms of the sum   In the statistics this leads to the below shown inequality for the expecte

regression line drawn as Y=C+1075x, when x was 2, and y was 239, given that y intercept was 11. calculate the residual

Categorizing continuous variables : A practice which involves the conversion of the continuous variables into the series of the categories, which is common in the field of medical