Whites general heteroscedasticity test, Advanced Statistics

The Null Hypothesis - H0:  γ1 = γ2 = ...  =  0  i.e.  there is no heteroscedasticity in the model

The Alternative Hypothesis - H1:  at least one of the γi's are not equal to zero i.e. the squared residuals are related to one of the independent variables.

Reject H0 if nR2 > 1640_Tests for Heteroscedasticity.png

MTB > let c23 = c7*c7

MTB > let c24 = c8*c8

MTB > let c25 = c9*c9

MTB > let c26 = c10*c10

MTB > let c27 = c7*c8

MTB > let c28 = c7*c9

MTB > let c29 = c7*c10

MTB > let c30 = c8*c9

MTB > let c31 = c8*c10

MTB > let c32 = c9*c10

C7 = totexp

C8 = income

C9 = age

C10 = nk

C23 = sqtotexp

C24 = sqincome

C25 = sqage

C26 = sqnk

C27 = totexpincome

C28 = totexpage

C29 = totexpnk

C30 = incomeage

C31 = incomenk

C32 = agenk

Regression Analysis: sqres versus totexp, income, ...

* sqnk is highly correlated with other X variables

* sqnk has been removed from the equation.

The regression equation is

sqres = 0.0178 - 0.000232 totexp + 0.000023 income + 0.000298 age - 0.00555 nk

        + 0.000001 sqtotexp + 0.000000 sqincome - 0.000005 sqage

        - 0.000000 totexpincome + 0.000003 totexpage + 0.000015 totexpnk

        - 0.000001 incomeage + 0.000035 incomenk - 0.000021 agenk

 

Predictor            Coef     SE Coef      T      P

Constant         0.017804    0.007900   2.25  0.024

totexp        -0.00023207  0.00005370  -4.32  0.000

income         0.00002344  0.00003865   0.61  0.544

age             0.0002978   0.0003511   0.85  0.396

nk              -0.005551    0.003233  -1.72  0.086

sqtotexp       0.00000060  0.00000011   5.65  0.000

sqincome       0.00000004  0.00000002   1.79  0.074

sqage         -0.00000464  0.00000427  -1.09  0.277

totexpincome  -0.00000041  0.00000013  -3.27  0.001

totexpage      0.00000259  0.00000110   2.36  0.018

totexpnk       0.00001477  0.00001740   0.85  0.396

incomeage     -0.00000110  0.00000090  -1.22  0.223

incomenk       0.00003506  0.00001355   2.59  0.010

agenk         -0.00002146  0.00008647  -0.25  0.804

S = 0.0123952   R-Sq = 3.4%   R-Sq(adj) = 2.5%

Analysis of Variance

Source            DF         SS         MS     F      P

Regression        13  0.0080446  0.0006188  4.03  0.000

Residual Error  1505  0.2312304  0.0001536

Total           1518  0.2392750

 

Source        DF     Seq SS

totexp         1  0.0003007

income         1  0.0000070

age            1  0.0000053

nk             1  0.0000429

sqtotexp       1  0.0037616

sqincome       1  0.0000507

sqage          1  0.0001055

totexpincome   1  0.0010903

totexpage      1  0.0005678

totexpnk       1  0.0009260

incomeage      1  0.0001557

incomenk       1  0.0010217

agenk          1  0.0000095

 

MTB > let k4=1519*0.034

MTB > print k4

 

Data Display

 

K4    51.6460

 

MTB > InvCDF 0.95;

SUBC>   ChiSquare 13.

 

Inverse Cumulative Distribution Function

Chi-Square with 13 DF

P( X <= x )        x

       0.95  22.3620

MTB > # Since nrsq = 1519*0.034= 51.6460 > chi=22.360 we have hetero from white test# Also both B-P and White test seem to indicate that totexp is the culprit

Since nrsq = 51.6460 > 22.360 = , there is sufficient evidence to reject H0 which suggests that there is heteroscedasticity in the model from White's general heteroscedasticity test at the 5% significance level.  Both Breusch Pagan test and White's general heteroscedasticity test seem to indicate that totexp is the culprit as the T value is significant and the P-value is 0.000.

Posted Date: 3/4/2013 5:59:01 AM | Location : United States







Related Discussions:- Whites general heteroscedasticity test, Assignment Help, Ask Question on Whites general heteroscedasticity test, Get Answer, Expert's Help, Whites general heteroscedasticity test Discussions

Write discussion on Whites general heteroscedasticity test
Your posts are moderated
Related Questions
You have learned that there are 3 major central measures of any data set. Namely: mean, median, and mode. Which of the three, do the outliers affect the most?

This is acronym for the Epidemiological, Graphics, Estimation and Testing of the program developed for the analysis of the data from studies in epidemiology. It can be made in use

Regression through the origin : In some of the situations a relationship between the two variables estimated by the regression analysis is expected to pass by the origin because th

Biplots: It is the multivariate analogue of the scatter plots, which estimates the multivariate distribution of the sample in a few dimensions, typically two and superimpose on th

The linear component ηi, de?ned just in the traditional way: η i = x' 1 A monotone differentiable link function g that describes how E(Yi) = µi is related to the linear compon

You may have the opportunity to buy some electronic components. These components may be reliable (1) or unreliable (2). The potential pro?ts are £10,000 if the components are rel

Treatment allocation ratio is the ratio of the number of subjects allocated to the two treatments in a clinical trial. The equal allocation is most usual in practice, but it might

Case-control study : The traditional case-control study is the common research design in the epidemiology where the exposures to risk factors for cases (individuals getting the dis

Longini Koopman model : In epidemiology the model for primary and secondary infection, based on the classification of the extra-binomial variation in an infection rate which might

Non-randomized clinical trial is the clinical trial in which the series of consecutive patients receive a new treatment and those which respond (according to some of the pre-defin