Back to the workshop the previous problem but assuming that in each of the three stages of development, there is a certain probability that a major defect is detected. When such a defect is detected, the other stages of the check-up are not made and the unit is sent to another workshop. Assume that these probabilities are equal to 0.1, 0.2 and 0.3, respectively.
(A) Build a model ofabsorbing Markov chain representing successive stages of the check-up of such a device. Clearly indicate the matrices Q and R of probabilities transition to the transient and absorbing states, respectively.
(B) On average, how many days does it take to complete the check-up or to see a major defect?
(C) What is the probability that a major defect is detected?
(D) On average, how many technicians are serving in the workshop every day business?