Water soluble vitamins, Biology


Water Soluble Vitamins


B-vitamins are abundant in milk and other feeds. B-vitamins are synthesized by rumen microorganisms, beginning soon after a young animal begins feeding. As a result, B-vitamin deficiency is limited to situations where an  antagonist is present or the rumen lacks the precursors to make the vitamin or impaired rumen microbial activity.

Vitamin B12


Vitamin B12 is the generic descriptor for a group of compounds having vitamin B12 activity. One feature of vitamin B12 is it contains 4.5 % cobalt. The naturally occurring forms of vitamin B12 are adenosylcobalamin and methyl cobalamin. These are found in both plant and animal tissues. The primary functions of vitamin B 12  involve
metabolism of nucleic acids, proteins, fats and carbohydrates. Vitamin B12 is of special interest in ruminant nutrition because of its role in propionate metabolism, as well as the practical incidence of vitamin B12  deficiency as a secondary result of cobalt deficiency. Primarily, cobalt content of the diet is the limiting factor for ruminal microorganisms synthesising vitamin B12. A vitamin B12  deficiency is difficult to distinguish from a cobalt deficiency. The signs of deficiency may not be specific and can include poor appetite, retarded growth and poor condition. In severe deficiencies, muscular weakness and demyelination of peripheral nerves occurs. In young ruminant animals, vitamin B12 deficiency can occur when rumen microbial flora have not reached adequate populations or are depleted due to stress.

Thiamin

Thiamin functions in all cells as a coenzyme cocarboxylase. Thiamin is the coenzyme responsible for all enzymatic carboxylations of keto-acids in the tricarboxylic acid cycle, which provides energy to the body. Thiamin also plays a key role in glucose metabolism. Synthesis of thiamin by rumen microflora makes it difficult to establish a ruminant requirement. Generally, animals with a functional rumen can synthesize adequate amounts of thiamin. In all species, a thiamin deficiency results in central nervous system disorders, because thiamin is an important component of the biochemical reactions that break down the glucose supplying energy to the brain. Other signs of thiamin deficiency include weakness, retracted head and cardiac arrhythmia. As with other water-soluble vitamins, deficiencies can result in slowed growth, anorexia and diarrhea.

Niacin


Niacin functions in carbohydrate, protein and lipid metabolism as a component of the coenzyme forms of nicotinamide, nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). Niacin is particularly important in ruminants because it is required for liver detoxification of portal blood NH3 to urea
and liver metabolism of ketone in ketosis. Niacin is supplied to the ruminant by three  primary sources: dietary niacin, conversion of tryptophan to niacin and ruminal synthesis. Although adequate quantities of niacin are normally synthesized in the rumen, several factors can influence ruminant niacin requirements, including protein (amino acid) balance, dietary energy supply, dietary rancidity and niacin availability in feeds. Young ruminants are most susceptible to niacin deficiency and a dietary source of niacin or tryptophan is required until the rumen fully develops. In most species, the first signs of niacin deficiency are loss of appetite, reduced growth, general muscular weakness, digestive disorders and diarrhea. The skin may also be affected with a scaly dermatitis. These signs are often followed by a microcytic anemia.


Choline

Choline is essential for building and maintaining cell structure and for the formation of acetylcholine, the compound responsible for transmission of nerve impulses. While all naturally occurring fats contain choline, little information is available on the biological availability of choline in feeds. Unlike most vitamins, choline can be synthesized by most animal species. However, it is recommended that milk-fed calves receive supplementation of 0.26 % choline in milk replacers. Calves fed a synthetic milk diet containing 15 % casein exhibited signs of choline deficiency. Within a week, calves developed extreme weakness, labored breathing and were unable to stand. Supplementation with 260 mg choline/L milk replacer alleviated the signs of choline deficiency.

Conclusions


Minerals play a significant role in production and reproduction either singly or in combination. Overcoming the deficiency or imbalance of the trace minerals improves the productive efficiency of livestock to great extent. Hence minerals are to be considered in tropical feeding system not in isolation but as a part of total nutrient management system. In India, where land availability for grazing or fodder cultivation is less and type of cultivar (grains, legumes, oil seeds) is designed mostly for human consumption, only the by-products become available to animals. Hence the emphasis should be on ways of mineral supplementation cost-effectively based on prevailing livestock farming system and available resources. Three forms of mineral supplements can be practically adopted. 1. General purpose, productivity supporting, inorganic mineral compounds 2. Special purpose (high phosphorus, high calcium, high zinc), which are area specific formulated depending upon valid area survey results. 3. Organic ligand bound specific supplements (chelates, proteinates, amino acid complexes) for feeding under stressful / deficient conditions.

Posted Date: 9/14/2012 9:20:56 AM | Location : United States







Related Discussions:- Water soluble vitamins, Assignment Help, Ask Question on Water soluble vitamins, Get Answer, Expert's Help, Water soluble vitamins Discussions

Write discussion on Water soluble vitamins
Your posts are moderated
Related Questions
Q What are the major morphological features of arthropods? Arthropods present three distinguishing features: they are metameric beings (segmented body), they present articulate

Table provides you the classification of the living primates. The primate fossil history dates back to 60 million years i.e. to Paleocene times, more specifically to the cretaceous

Define Procedure for Testing the Presence of Starch in Milk 1. Take 1 ml of milk sample in a test tube. 2. Add few drops of iodine solution. (2.5 gm of iodine is dissolved i

Nature: Matter and Energy Nature is not just our immediate surrounding or environment, but is the whole Universe of Cosmos. Study of the origin   and topography of cosmos is ca

Define endocytosis of GLUT4 Transporters Person X is a healthy human who has volunteered to take experimental drug Y.  Person X has a normal dinner at 6 PM on April 1 and then

Into which classes are mollusc divided? What are some representing beings of each class? The phylum Mollusca is separated into five major classes: pelecypods, or bivalves (Pele

Define requirement of energy for Physical activity? This is the most variable and, after BMR, the second largest component of daily energy expenditure. Humans perform obligator

Explain why methionine is the first amino acid in every growing polypeptide. The tRNA that pairs with the start codon on mRNA carries methionine. RNA having ribose; DNA contain

Define Role of Iron in Controlling Gene Expression? Iron metabolism is regulated by a complex co-ordinate mechanism. Recent evidence supports specific past-transcriptional mech

a) How is the milk production regulated by hormones in human female? Define. b) Explain the importance of the auxin / cytokinin ratio in plant tissue culture.