Voltage, current, and charge control, Electrical Engineering

Voltage, current, and charge control:

The collector-emitter current can be seen as being controlled through the base-emitter current (current control), or through the base-emitter voltage (voltage control). These views are associated by the current-voltage relation of the base-emitter junction that is just the usual exponential current-voltage curve of a p-n junction (diode).

The physical description for collector current is the quantity of minority-carrier charge in the base region. Detailed models of transistor action, like the Gummel-Poon model, account for the distribution of this charge explicitly to describe transistor behavior much more exactly. The charge-control view simply handles phototransistors, in which minority carriers in the base region are made by the absorption of photons, and handles the dynamics of turn-off, or recovery time, which depends upon charge in the base region recombining. Though, because base charge is not a signal which is visible at the terminals, the current- and voltage-control views are usually employed in circuit design and analysis.

Within analog circuit design, the current-control view is sometimes employed because it is approximately linear. i.e., the collector current is almost βF times the base current. Some fundamental circuits can be considered by assuming that the emitter-base voltage is approximately constant, and that collector current is beta times the base current. Though, to accurately and reliably design production bipolar junction transistor circuits, the voltage-control (for instance, Ebers-Moll) model is needed. The voltage-control model needs an exponential function to be taken into consideration, but while it is linearized such that the transistor can be modeled like a transconductance, like in the Ebers-Moll model, design for circuits like differential amplifiers again becomes a mostly linear problem, thus the voltage-control view is frequently preferred. For translinear circuits, where the exponential I-V curve is key to the operation, the transistors are generally modeled as voltage controlled with transconductance proportional to collector current. Usually, transistor level circuit design is carried out by using SPICE or a comparable analogue circuit simulator, so model complexity is generally not of much concern to the designer.

Posted Date: 1/10/2013 6:37:10 AM | Location : United States







Related Discussions:- Voltage, current, and charge control, Assignment Help, Ask Question on Voltage, current, and charge control, Get Answer, Expert's Help, Voltage, current, and charge control Discussions

Write discussion on Voltage, current, and charge control
Your posts are moderated
Related Questions
Hello I am doing a Btec degree in Electrical and electronic engineering and I was wondering if you can help me complete it because I am behind

trigger capabilities of logic analyser that differentiate it from other devices???

Derive Lame's equation for a thick cylinder subjected to internal pressure with clean diagrams. Evaluate the maximum and minimum hoop stresses across the section of a pipe of400

Q. Advantages and Disadvantages of rc coupled amplifier? Advantages 1. Aids excellent frequency response.The gain is constant over the audio frequency range 2. It has l

Q. Write a short note on RS-232-C. Ans: RS-232 standard is a collection of connection standards between different pieces of equipment. EIA RS-232 serial communication standard


A rifle with a mass of 3,5 kg fires a bullei with a mass of 120 g with a muzzle velocity of 420 mls. Calculate the following: 1.4.''l The momentum before the rifle was fired ''1.4.

Q. Explain The Input Characteristics Of Common Emitter Configuration? Input characteristics:In the figure the abscissa is the base current IB, The ordinate is the base to emitter

Applications of Semiconductors Integrated circuits (ICs) SSI, MSI, LSI, and VLSI. Fluorescent materials used in TV screens II-VI (ZnS). Light detectors InSb, CdSe, Pb

Q. A rectangular air-?lled RG-52/U is made of brass (ρ = 3.9 × 10-8 m) and has dimensions a = 22.86 mm and b = 10.16 mm. (a) Determine ¯ Z0(= R0) at the limits of the practica