Voltage, current, and charge control, Electrical Engineering

Voltage, current, and charge control:

The collector-emitter current can be seen as being controlled through the base-emitter current (current control), or through the base-emitter voltage (voltage control). These views are associated by the current-voltage relation of the base-emitter junction that is just the usual exponential current-voltage curve of a p-n junction (diode).

The physical description for collector current is the quantity of minority-carrier charge in the base region. Detailed models of transistor action, like the Gummel-Poon model, account for the distribution of this charge explicitly to describe transistor behavior much more exactly. The charge-control view simply handles phototransistors, in which minority carriers in the base region are made by the absorption of photons, and handles the dynamics of turn-off, or recovery time, which depends upon charge in the base region recombining. Though, because base charge is not a signal which is visible at the terminals, the current- and voltage-control views are usually employed in circuit design and analysis.

Within analog circuit design, the current-control view is sometimes employed because it is approximately linear. i.e., the collector current is almost βF times the base current. Some fundamental circuits can be considered by assuming that the emitter-base voltage is approximately constant, and that collector current is beta times the base current. Though, to accurately and reliably design production bipolar junction transistor circuits, the voltage-control (for instance, Ebers-Moll) model is needed. The voltage-control model needs an exponential function to be taken into consideration, but while it is linearized such that the transistor can be modeled like a transconductance, like in the Ebers-Moll model, design for circuits like differential amplifiers again becomes a mostly linear problem, thus the voltage-control view is frequently preferred. For translinear circuits, where the exponential I-V curve is key to the operation, the transistors are generally modeled as voltage controlled with transconductance proportional to collector current. Usually, transistor level circuit design is carried out by using SPICE or a comparable analogue circuit simulator, so model complexity is generally not of much concern to the designer.

Posted Date: 1/10/2013 6:37:10 AM | Location : United States







Related Discussions:- Voltage, current, and charge control, Assignment Help, Ask Question on Voltage, current, and charge control, Get Answer, Expert's Help, Voltage, current, and charge control Discussions

Write discussion on Voltage, current, and charge control
Your posts are moderated
Related Questions
Q. The flux-density distribution produced in a two - pole synchronous generator by an acexcited field winding is B(θ, t) = B m sin ω 1 t cos θ Find the nature of the armatur

Referring to Figure, let boxes 2, 3, and 5 consist of a 0.2-H inductor, a 5- resistor, and a 0.1-F capacitor, respectively. Given A = 5, and v 1 = 10 sin 10t, i 2 = 5 sin 10t ,

matlab program for verifying maximum power transfer

GIS Based Mapping of Electrical Network: You have learnt in which the Geographic Information System is a system of mapping of the complete electrical network. The question we

Q. Three dc generators are operating in parallel with excitations such that their external characteristics are almost straight lines over the working range with the following pairs

Lack of Accountability - High Technical Usage In huge, complex and widespread ST&D networks such as ours, the subsequent factors pose problems in arriving at reasonable estima

4GLs (Fourth Generations Languages) These  are called  non procedural  languages May be considered as  advanced HLL. Objects oriented programming  languages and language  with

what is force?

Write some disadvantages of loosely coupled systems More complicated due to the needed additional communication hardware. They are less portable and more expensive because o

Q. A rigid 50- coaxial transmission line has air as dielectric. If the radius of the outer conductor is 1 cm, find the cutoff frequency