Transition metals - ligand field theory, Chemistry

The five d orbitals with distinct values of the magnetic quantum number (m) have the similar energy in a free atom or ion. In any compound they interact differently with the surrounding ligands and a ligand field splitting is performed. The common coordination is octahedral (Oh point group) with six surrounding ligands. Then two of the d orbitals are required at higher energy than the other three (dxz, dxy and dyz, known as t2g). Such a splitting happens in any transition metal compound with octahedral coordination, including aqua ions and several solids. Electronic transitions between eg and t2g orbitals show rise to colors, which are a similar feature of transition metal complexes, and allow Δo to be measured experimentally.

 

Although originally explained in terms of electrostatic repulsion between the ligands d and electrons, it is now defined that ligand field splittings come from the similar type of orbital overlap effects as donor-acceptor interactions.

 

 

412_Untitled.png

 

Fig.  The five d orbitals, showing eg and t2g sets in an octahedral complex, with ligands along the x, y and z axes.

 

 Most ligands coordinate to the metal ion giving nonbonding electrons. A ligand lone-pair orbital pointing directly to the metal comes with the eg orbitals (1) but has the wrong symmetry to communicate with t2g. The overlap shows rise to antibonding and σ bonding molecular orbitals . The bonding orbitals are covered by the electrons from the ligand, and it is the σ antibonding levels that form the 'metal' eg set, require for the d electrons of the metal ion. A rigid σ-donor ligand can give a large splitting Δo by raising the eg energy, π bonding arises when ligands have orbitals directed perpendicular to the metal-ligand axis, which may communicate with the metal t2g orbitals (2)


The order of Δo values gives by different ligands is known as the spectrochemical series. A partial series in order of increasing splitting is:

 

2052_Untitled.png

 

As expected, rigid donors are usually high in the series, π donors are low, and π-acceptor ligands such as CO and CN- are among the highest, and known as strong field ligands. The major trends with different metal ions are (i) Δo increases with charge on the ion, and (ii) splittings are bigger for 5d and 4d series elements than in the 3d series.

 

Posted Date: 7/23/2012 7:32:22 AM | Location : United States







Related Discussions:- Transition metals - ligand field theory, Assignment Help, Ask Question on Transition metals - ligand field theory, Get Answer, Expert's Help, Transition metals - ligand field theory Discussions

Write discussion on Transition metals - ligand field theory
Your posts are moderated
Related Questions
Define the General Arrangement of Physical Elements of a Galvanic cell? The general arrangement of the physical elements of a galvanic cell is therefore Terminal - electron

Define Enable the Acquisition of Powers of Observation I.  PURPOSE OF THE EXPERIMENT The purpose of the experiment is to enable the acquisition of powers of observatio

how does chemical bonding takes place?

A red flame is produced when LiCl is heated. How can I determine which transition between the energy levels produces this colour?


Tests of chloroform (a) It gives isocyanide test (Carbylamine test). (b) It makes silver mirror with Tollen's reagent. (c) Pure Chloroform does not give white precipitate

During the electrolysis of water, what are the two half-reactions taking place? HALF-REACTION AT THE ANODE: HALF-REACTION AT THE CATHODE: What is the relative ratio betwee

Discuss about the different types of stones used for the construction and how to determine the good quality stone?

ELECTROCHEMICAL  THERMODYNAMICS Notation: To avoid repetitive drawing of complicated cells diagram, a common notation has been adopted for cells. All electrical contacts

Difference between mesomrism and resonance