linear programming , Operation Research

A paper mill produces two grades of paper viz., X and Y. Because of raw material restrictions, it cannot produce more than 400 tons of grade X paper and 300 tons of grade Y paper in a week. There are 160 production hours in a week. It requires 0.20 and 0.40 hours to produce a ton of grade X and Y papers. The mill earns a profit of Rs. 200 and Rs. 500 per ton of grade X and Y paper respectively. Formulate this as a Linear Programming Problem.
Posted Date: 2/17/2013 2:21:45 PM | Location : USA







Related Discussions:- linear programming , Assignment Help, Ask Question on linear programming , Get Answer, Expert's Help, linear programming Discussions

Write discussion on linear programming
Your posts are moderated
Related Questions
Find a minimum cost spanning arborescence rooted,

A water chillier with a capacity of 30 TR cools 20 m 3 /hr. water entering at 12 o C what is the temp. of water leaving the chillier. A reversible engine has an ideal thermal ef

Using   Software for Analysis Grouping and Displaying Data   to Convey Meaning Normal 0 false false false EN-IN X-NONE X-NONE

Calculation of Ranks Correlation Where Ranks  are Given: When the  actual  ranks  are given  the steps  followed are: a.Compute  the difference  of the  two ranks  (R1 and

What kind of research situation do the two new brands present for Mr. Lynn company?

Ask question #Minimum 100 words acceptNas food produces to kinds of popular dark chocolate bars. the banana and coffee. the banana bar costs 0.22 to make and sells of 0.35, where a

A paper mill produces two grades of paper viz., X and Y. Because of raw material restrictions, it cannot produce more than 400 tons of grade X paper and 300 tons of grade Y paper i

A paper mill produces two grades of paper viz., X & Y. Because of raw material restrictions, it cannot produce more 400 tons of grade X paper & 300 tons of grade Y paper in a week.

A PAPER MILL PRODUCES TWO GRADES OF PAPER VIZ., X AND Y. BECAUSE OF RAW MATERIAL RESTRICTIONS, IT CANNOT PRODUCE MORE THAN 400 TONS OF GRADE X PAPER AND 300 TONS OF GRADE Y PAPER I

Q3. Solve the following Linear Programming Problem using Simple method. Maximize Z= 3x1 + 2X2 Subject to the constraints: X1+ X2 = 4 X1 - X2 = 2 X1, X2 = 0