Technical loss in electrical systems, Electrical Engineering

Assignment Help:

Technical Loss in Electrical Systems

Technical loss is inherent in electrical systems, as all electrical devices have a few resistances and the flow of currents causes a power loss (I2R loss). Integration of this power loss over time, i.e. ∫ I2R.dt is the energy loss. Every element in a power system (a line or a transformer) offers resistance to power flow and, therefore, consumes some energy although performing the duty expected of it. The cumulative energy consumed by all these elements is classified as "Technical Loss." Technical losses are because of energy dissipated in the conductors and equipment used for Transmission, Transformation, Sub- transmission and Distribution of Power. These occur at several places in a distribution system - in lines, mid-span joints and terminations transformers, service cables and connections and etc.

Table: Losses Due to Technical Reasons

•  Line losses

•  Loss in conductors/cables where lowersize conductors are used. This causessags and temperature rise in conductorswhich further aggravate the loss,

•  Loss in higher loaded phase wires due to unbalanced loading,

•  Loss due to current in neutral for cases or unbalance where neutral wires of lowersize are used (like 3 ½ core cables, andneutral wires of size lower than phasewires),

•  Loosening of strands (in multi-strandconductors like ACSR, AAC, AAA, etc.). 

•  Loss in mid-span joints

(or any joint) and at

terminations

•  Contacts of joints due to improper installation and looseness,

•  Contacts of joints due to inadequatesurface area of contact.

•  Loss in transformers

(typically DTs)

 

•  Loose connections at bushings,

•  Bend in jumpers at connectors where the strands are not tightly held,

•  High no-load loss depending on type of core used, 

•  High no-load loss in repaired transformers where the core has not been properly tightened,

•  No load loss in case a large number of lightly loaded DTs,

•  High copper loss for transformers operating at sub-optimal loading which is not commensurate with the designed optimal loading. 

•  Loss in service cables

and connections

•  Undersized service cables,

•  Loss in joints of service cables at the poles/junction boxes,

•  Use of inappropriate fasteners without spring washers at the crimped joints.

•  Loss due to high

impedance faults

•  Tree touching, creepers, bird nesting,

•  Insulator breakages and tracking on surface of the insulator.

•  Loss in re-wired

fuses/jumpers

•  Loose connections,

•  Inadequate size of fuse wires - often a source of hot spots.

The magnitude of energy dissipation depends hugely on the pattern of loading of transmission and distribution lines, kinds of loads, design of lines and etc. It is not probable to eliminate such losses inherent in a system altogether. They could, thus, be reduced to some extent. The technical losses could be further sub-grouped depending upon the stage of power transformation and transmission system as Sub-transmission losses (33 kV/11kV), Transmission losses (400 kV/220 kV/132 kV/66 kV), and Distribution losses (11 kV/0.4 kV).


Related Discussions:- Technical loss in electrical systems

How to calculate new current and terminal voltage?, Q. Series generator hav...

Q. Series generator having a combined armature and field resistance of 0.4? is running at 1000 r.p.m. and delivering 5.5kw at terminal voltage of 110 V. If the speed is raised to 1

Define short lines, Define Short Lines? For short power lines (up to 50...

Define Short Lines? For short power lines (up to 50 miles; 80 km),  the effects of the shunt capacitance and leakage resistance are negligible. Hence the line may be represente

Forces and torques in magnetic-field systems, Q. Forces and torques in magn...

Q. Forces and torques in magnetic-field systems? We mentioned earlier that the greater ease of storing energy in magnetic fields largely accounts for the common use of electrom

Calculate the actual frequency of circuit, (a) The circuit of Figure 1 repr...

(a) The circuit of Figure 1 represents an amplifier-speaker connection. The filter is a low pass filter which is connected to the woofer. The filter is a -network. (i) Design a

Example numerical of dc generator., Q. An 8 - pole dc generator has 500 arm...

Q. An 8 - pole dc generator has 500 armature conductors and has a useful flux per pole of 0.065 web. What will be the emf generated if it is lap connected and runs at 1000 r.p.m.

Technical loss reduction - power supply, Technical Loss Reduction - Power S...

Technical Loss Reduction - Power Supply 1. Technical loss reduction could be achieved through several measures such as network reconfiguration, load balancing, network recondu

What do you mean by conductors and insulators, Q. What do you mean by Condu...

Q. What do you mean by Conductors and Insulators? In order to put charge in motion so that it becomes an electric current, one must provide a path through which it can flow eas

Oscilloscope probe compensation, Q.   what is oscilloscope probe compensati...

Q.   what is oscilloscope probe compensation and how is it adjusted?  What effects are noted when the compensation is not correctly adjustment? Direct Probe: This probe  is

Explain mesh - current method, Q. Explain Mesh - Current Method? This c...

Q. Explain Mesh - Current Method? This complements the nodal-voltage method of circuit analysis. A set of independent mesh-current variables that implicitly satisfy the KCL equ

Electromagnetic torque, The torque produced by each conductor in the field ...

The torque produced by each conductor in the field will be:  where A is the area of the armature winding in the magnetic field, Ia is the current in armature winding, and B

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd