Sum of a number of terms in a.p., Mathematics

We know that the terms in an A.P. are given by

a, a + d, a + 2d, a + 3d, ........ a + (n - 2)d, a + (n -  1)d

The sum of all these terms which is denoted by "S" is given by

  S = n/2 {2a + (n - 1)d}

This is obtained as follows. We know that

S       =       (a) + (a + d) + (a + 2d) + (a + 3d) + ..... +

                   {(a + (n - 2)d)} + {(a + (n - 1)d)}

Now we reverse the order and write it as shown below.

S       =       (a + (n -1) d) + (a + (n - 2) d) + ......... +

                   (3d + a) +  (2d + a) + (d + a) + a

On adding the respective terms we get

2S     =       {a + a + (n - 1)d} + {a + d + a + (n - 2)d}

                   + ......... + {a + (n - 2)d  + a + d} +

                   {a + (n - 1)d + a} 

That is, we have:

2S     =       {2a + (n - 1)d} + {2a + d + (n - 2)d} +

                    ............... + {2a + d + (n - 2)d} +

                   {2a + (n - 1)d}

Further simplifying we obtain

2s     =       {2a + (n - 1)d} + {2a + d + nd - 2d} +.............. +

                   {2a + d + nd - 2d} + {2a + (n - 1)d}

On simplification we obtain

2s     =       {2a + (n - 1)d} + {2a + nd - d} + ......... +

                   {2a + nd - d} + {2a + (n - 1)d}

2s     =       {2a + (n - 1)d} + {2a + (n - 1)d} + ....... +

                   {2a + (n - 1)d} + {2a + (n - 1)d}

Since 2 + 2 + 2 + 2 = 2(1 + 1 + 1 + 1) = 2 x 4,

2a + (n - 1)d  multiplied n times will be  n.{2a + (n - 1)d}. Therefore,

         2s      =       n.{2a + (n - 1)d}

                            or

s

= n/2 {2a + (n - 1)d}       ............. (a)

Since l = a + (n - 1)d,  equation (a) is also written as

s

= n/2   {a + a + (n - 1)d}  or       

= n/2 {a + l}

Now we will find the sum of 20 terms when a = 5 and d = 2. Substituting these values in the formula, we obtain

s

= 20 /2 {2(5) + (20 - 1)2}
  = 480  

This problem can also be solved by finding the last term which in this case happens to be T20 and it is given by T20 = 5 + (20 - 1)2 = 43. Therefore,

s = n /2 {a + l}
  = 20 /2 {5 + 43} = 480.

We observe that both these methods are essentially the same. With this background let us look at few more examples.

Example 

For the series given below, find the 23rd and the 27th terms.

                   38, 36, 34, .............

We are given the first term that is a = 38. The common difference d is given by 36 - 38 = -2.  The 23rd term is given by

         T23    =       a + 22d

                   =       38 + 22(-2)  

                   =       38 - 44  = - 6  

Similarly the 27th term is given by

         T27    =       a + 26d

                   =       38 + 26(-2)

                   =       38 - 52

Posted Date: 9/13/2012 4:20:58 AM | Location : United States







Related Discussions:- Sum of a number of terms in a.p., Assignment Help, Ask Question on Sum of a number of terms in a.p., Get Answer, Expert's Help, Sum of a number of terms in a.p. Discussions

Write discussion on Sum of a number of terms in a.p.
Your posts are moderated
Related Questions
a conical vessel of radius 6cm and height 8cm is completely filled with water.a sphere is lowered into the water and its size is such that when it touches the size it is immersed.w

I have a maths assignment as- Use a newspaper to study and give a report on shares and dividends.

The sum of two consecutive integers is 41. What are the integers? Two consecutive integers are numbers in sequence like 4 and 5 or -30 and -29, that are each 1 number apart. Le


Find the third vertex of a triangle if its two vertices are (-1, 4) and (5, 2) and mid point of one side is (0, 3).

how to make 2.3 into a fraction?


Graph f ( x ) = e x and g ( x ) = e - x . Solution There actually isn't a lot to this problem other than ensuring that both of these exponentials are graphed somewhere.

Use an appropriate infinite series method about x = 0 to find two solutions of the given differential equation: y''''-xy''-y=0

Apply the concept of partial fraction and add the corresponding terms. The terms will get cut automatically leaving the first and last term