Sound waves in gases, Mechanical Engineering

Sound Waves in Gases

Sound waves are longitudinal pressure waves. Let us consider the motion of a plane sound wave moving along X-axis in a gas medium. In undisturbed position, the gas medium is described by its equilibrium pressure P0 and density ρ0. A mechanical disturbance deforms the equilibrium state of the gas. The gas particles are displaced longitudinally causing compressions and rarefactions. Consequently, the density and pressure of the gas changes. The pressure variation moves in the medium from one region to the other producing a pressure wave.

To obtain the wave equation, we consider the motion of a thin slab of the gas (of unit area), lying between position x and x + Δ x. Following the steps exactly as in the elastic rod, the average volume strain of this element of gas is given by


The volume strain is produced because the pressures along the X-axis on both sides of the thin element are different. The net pressure or stress on the gas element, within linear approximation, towards +ve X-axis is

1721_download (1).png 

Now (instead of Young's modulus), the elastic property of gas is defined in terms of its bulk modulus K as

1873_download (2).png 

The minus sign in the definition of K appears because volume strain is negative for positive stress.

1035_download (3).png 

That is, bulk modulus K is determined about equilibrium condition. Hence the net force on the gas element is

1815_download (5).png 

The equation of motion of the gas element (mass = ρ0 Δ x), therefore, is

2383_download (6).png 

Hence, the velocity of sound waves in a gaseous medium

448_download (7).png 

depends upon the equilibrium density ρ0 and bulk modulus K of the gas. Note that bulk modulus K is also evaluated at equilibrium condition

791_download (8).png 

The value of K therefore depends on how pressure of the gas changes with respect to volume during wave motion. It turns out that the temperature in a sound wave does not remain constant. The excess pressure causing the compression raises the temperature of gas there; the region of rarefaction cools slightly as the pressure falls. The time period of oscillation is so small that before heat could flow from one region to another, the region of compression turns into region of rarefaction and vice-versa. The sound motion therefore is an adiabatic process and gas obeys the equation.

178_download (9).png

Posted Date: 9/18/2012 1:51:44 AM | Location : United States

Related Discussions:- Sound waves in gases, Assignment Help, Ask Question on Sound waves in gases, Get Answer, Expert's Help, Sound waves in gases Discussions

Write discussion on Sound waves in gases
Your posts are moderated
Related Questions
The aim of this project is for you to discover how to use a spreadsheet to "model" a typical engineering problem, in this case a heat transfer situation. And to discover how this m

SUBMERGED ARC WELDING-Set Up Submerged arc welding system consists of the following basic modules: 1. Welding head 2. Power source 3. Flux feeding and recovery units Schematic

Normal 0 false false false EN-IN X-NONE X-NONE MicrosoftInternetExplorer4

we can use in proove of energy is a propertyof system we can use (E) instead of (dQ-dW)

The square cross sections A and B are shown in Fig Q1, the dimensions b = 80 mm, thickness t = 10 mm. A shear force V is applied at the cross section, calculate the maximum she

Design the keys - Shear Keys: A solid circular shaft is to transmit 200 kN at 200 rpm. If the maximum shear stress is not to exceed 80 n/mm 2 design the shaft. Design the key

The Rusk's own fairly large house near San Francisco and the following spreadsheet shows their month to month power use for two years.  1. What is their monthly average power us

list 5 important factors in the design of a workshops layout

Q. What is the use of welding electrode? An electrode is a piece of wire or a rod (of a metal or alloy), with or without flux covering, which carries current for welding. Its o

Water flows into the sink shown in figure 5 at a flow rate of 8 L/min. If the drain is closed, the water will eventually flow through the overflow drain holes rather than over the