Semiconductor equations, Electrical Engineering

Semiconductor Equations 

The semiconductor equations that are relating these variables are shown below:

Carrier density:

n = ni exp (EFN - Ei / KT)        (1)

p = ni exp (Ei - EFP / KT)        (2)

In which EFN is the electron quasi Fermi level and EFP is the hole quasi Fermi level. These above 2 equations lead to 

Np = n­i2 exp (EFN - EFP/ KT)   (3)

In equilibrium EFN = EFP = Constant

Current:

There are two mechanism of current; electron current density and hole current density. There are various mechanisms of current flow:

  1. Drift
  2. Diffusion
  3. Thermionic emission
  4. Tunnelling

The final two mechanisms are significant frequently only at the interface of two different materials like a metal-semiconductor junction or a semiconductor-semiconductor junction where the two semiconductors are of dissimilar materials. Tunneling is as well significant in the case of PN junctions in which both sides are heavily doped.

The dominant conduction mechanisms include drift and diffusion in the bulk of semiconductor. The current densities because of these two mechanisms can be written as

JN = qnμNε + qDN dn/dx   (4)

JP = qnμPε + qDP dP/dx   (5)

In which μN and μP are electron and hole mobilities correspondingly and DN, DP are their diffusion constants.

Potential:

The potential and electric field in a semiconductor can be described in the following ways:

  1. Ψ = - EC /q + constant ; ε =  (1/q) (dEc / dX)
  2. Ψ = - EV /q + constant ; ε =  (1/q) (dEV / dX)
  3. Ψ = - Ei /q + constant ; ε =  (1/q) (dEi / dX)
  4. Ψ = - EO /q + constant ; ε =  (1/q) (dEO / dX)

All these definitions are equal and one or the other may be selected on the basis of convenience. The potential is connected to the carrier densities through the Poisson equation: -

2 Ψ / ∂X2 = - q/ε (p-n+ N+D - N-A)      (6)

In which the last two terms present the ionized donor and acceptor density.

 

Posted Date: 1/11/2013 2:11:47 AM | Location : United States







Related Discussions:- Semiconductor equations, Assignment Help, Ask Question on Semiconductor equations, Get Answer, Expert's Help, Semiconductor equations Discussions

Write discussion on Semiconductor equations
Your posts are moderated
Related Questions
Q. The effective area of a dipole is given by A e =0.13λ 2 . Find the effective area of a half-wave dipole at 3 GHz.


What is the main difference between 16 bit and 32 bit versions of C/C++ while using in line assembler. The 32-bit applications are written by using Microsoft Visual C/C++ for t

ferroelectric materials are charatrised by

what is one common applicable for CB amplifier


We commissioned a 'bad practice exemplar' by asking Plexus to modify a good design (provided by Valor) to demonstrate the most likely kinds of faults in each of the areas Design fo

Supercomputer The largest  fastest and most  powerful  are called supercomputers. Supercomputers are mainly used for  weather forecasting remote  sensing image processing, biom

Ask question #Minimum 100 words acceptThere are various refrigeration systems employing various methods. State any seven (7) refrigeration systems, mention the method(s) employed t

Q.   List and explain the factors involved in the voltage build up of shunt generator. Ans. following factors are involved in voltage build up of shunt generation