Reverse recovery characteristics, Electrical Engineering

Reverse Recovery Characteristics

At the end of forward  conduction in diode  reverse current  flows for  a short  time. The  device  doesn't  attain its full blocking  capability  until  the reverse current  cease. The  reverse current flows  in the interval called  reverse  recovery time. During  this time  charge  carriers stored in the diode at the end of forward  conduction are removed. Actually when a  power diode  has been conduction in the  forward direction sufficiently long to  establish  the steady state there  will be a charge  due to  minority  carriers  present. Before  the device  can  block in the reverse direction  this charge  must be extracted.

This  extraction takes  the from  of a transient reverse current and this  together  with the  reverse bias  voltage results in additional power  dissipation  which reduces the rectification efficiency.  Reverse recovery time is measured  instant the current recovers to 25% of its peak  reverse value. low  reverse state forward  current and low reverse bias  voltage increase recovery time. High  rate of all of anode  current reduces recovery time but  increase stored charge. High  junction temperature is  increase both   recovery time and  stored charge.

There  are two  parts of  reverse recovery  time. One  is the time  between  zero  crossing  of forward current  and peak reverse current. During  this time  period, charges stored  in  depletion  region  is removed.  The other part  of t measured form the instant of peak reverse current to the instant where  25% of peak reverse  current  is reached. During this time period charges from the two  semiconductor layer are removed.

The  shaded  area in figure  represents  the stored  charge  or reverse  recovery charge  which  must be  removed  during  the reverse recovery time. The  ration ½ is known  as softness factor. Voltages  transient occurs during  the time  diode  recovers is measured by the factor.

b.   forward  voltage  drop vf and forward  current  if gives  the power  loss  in a diode.  The total power  loss in  given by  average value of V f i f  during  time t2 major power  loss  occurs  in a diode. As shown in  figure peak reverse current  IFP is given by

 I =  RP = t1 di/ dt

Where Do/ dt  is the  rate of  rise of  reverse  current. If  the reverse  recovery  characteristics  is assumed as a triangle shape  then storage charge  Q can be written as .

Q =  ( ½) (IRP ) (t rr).

Posted Date: 4/2/2013 1:06:22 AM | Location : United States

Related Discussions:- Reverse recovery characteristics, Assignment Help, Ask Question on Reverse recovery characteristics, Get Answer, Expert's Help, Reverse recovery characteristics Discussions

Write discussion on Reverse recovery characteristics
Your posts are moderated
Related Questions
Discuss MACRO assembler directive with example. MACRO: A sequence of instructions to that has a name is assigned is termed as macro. Macros and subroutines are the

Q. A synchronous motor operates continuously on the following duty cycle: 50 hp for 8 min, 100 hp for 8 min, 150 hp for 10 min, 120 hp for 20 min, and no load for 14min. Specify th

how to use tabular method to solve convolution problems

hi there i just need help for Electrical Engineering Design Report about any topic (prefer charger and inverter) which should be include Summary,Table of contents,Introduction,Body

Draw layout of hydro-electric power plant and illustrate it briefly. Explain the following: a. Types of power plants b. Selection of power Plants

A 3-kVA, 220:110-V, 60-Hz, single-phase transformer yields these test data: • Open-circuit test: 200 V, 1.4 A, 50 W • Short-circuit test: 4.5 V, 13.64 A, 30 W Determine th

Program counter holds the address of either the first byte of the next instruction to be fetched for implementation or the address of the next byte of a multi byte instruction, whi

Characteristics of Common Source Amplifier At low frequencies and by using a simplified hybrid-pi model, the following small-signal characteristics can be derived.

Assembly Language Programming  In this   chapter  we will   discuss  programming  in assembly  language and  machine  language. The  difference  in machine  assembly  and high

why we configure bjt using h parameter model