Resultant of non-coplanar force system, Mechanical Engineering

Resultant of Non-coplanar Force System:

The resultant of a system of coplanar forces can be attained by adding up two forces through law of parallelogram at a time and after that combining their sums.

Analytically, the similar result can be obtained by forming the rectangular components of the forces along with any two convenient perpendicular directions. The magnitude and the direction of the consequential are found in the same way as that given for the concurrent forces, i.e.

 

1156_Resultant of Non-coplanar Force System.png

                                tan θx  = ∑ Fy / ∑ Fx

The position of the line of action of R can be computed with the help of Varignon's theorem.

In particular case of non-coplanar forces, there can be parallel or non-parallel system of forces. In particular case of parallel forces, the resultant can be  (i) a single force R parallel to the system of forces, (ii) a couple in the plane of the system or in a parallel plane, or (iii) zero.

R = Σ F and it is parallel to the line of action of forces.

If          R ≠ 0 then the location of the line of action of the forces may be found out by

R × d = ∑ M o

Here,   d = perpendicular distance through the moment centre to the resultant R,

Σ Mo = algebraic addition of the moments of all of the forces w.r.t. the point under reference.

If Σ F = 0, the resultant can consist of a couple of magnitude Σ Mo.

Σ F = 0 and Σ Mo = 0, after that the resultant is zero.

For non-parallel forces, the resultant can be (a) a single force R (b) a couple, M, or (c) single force R and a couple M. In general, this is a combination of a force and a couple.

The resultant of any general force system may be attained by resolving each force into a parallel force through some of the common points and a couple. Therefore, the system is decreased to a set of concurrent forces and a set of couples. The resultant of concurrent force system may be attained by resolving the force into three mutually perpendicular axes system, x, y and z axis. Therefore, we obtain

2421_Resultant of Non-coplanar Force System1.png

cos θx = ∑ Fx / R, cos θ y =∑ Fy / R cos θz = ∑ Fz/ R

where ∑ Fx , ∑ Fy  and ∑ Fz are the algebraic sums of the components of all of the forces along with x, y and z axes, respectively. The angles θx, θy and θz are the angles that the resultant R makes respectively with x, y and z axes.

Posted Date: 1/28/2013 2:36:00 AM | Location : United States







Related Discussions:- Resultant of non-coplanar force system, Assignment Help, Ask Question on Resultant of non-coplanar force system, Get Answer, Expert's Help, Resultant of non-coplanar force system Discussions

Write discussion on Resultant of non-coplanar force system
Your posts are moderated
Related Questions
for a 210 MW unit how we calculate power output at each stage if the turbine has 25 reaction stages

STEA M ENGINE TERMINOLOGY: 1 .     Cylinder Bore: Inside diameter of cylinder. 2 .     Cover End and Crank End of cylinder: In the horizontal cylinders the end that

parameters in designing a presure vessels

Graphical simulation animation of a CAD system can be used to inspect the tolerance and interference of matching components of a product. It will be possible to precisely define

Before installing a bolt, stud or nut, threads shall be examined to ensure that there are no incompletely cut threads in the engagement zone (both internal and external) or burns,

Newton's second and  third law of motion: Newton's second law of motion: If resultant force is acting on particle is not zero, and then acceleration of particle will be prop


Q. Insulation on Flanges and Valves? Valves, flanges, and unions shall not normally be insulated unless specified by OWNER. All other fittings are to be insulated. Fittings

The mass flow rate is 28kg/s in an axial flow gas turbine that develops 3.5MW. The stagnation conditions are 780KPa and 730 deg.C. at the entry. At the exit of the nozzle, the stat

Q. Corrosion resistance of the nickel-based alloys? The corrosion resistance of the nickel-based alloys can also be significantly affected by other variables such as velocity a