Resolving all of the forces normal to the inclined plane, Mechanical Engineering

Resolving all of the forces normal to the inclined plane:

A body weighing 500 N is resting on an inclined plane making an angle of 30o with the horizontal. The coefficient of friction is equal to 0.3. A force P is applied parallel to & up the inclined plane. Determine the least value of P while the body is just on the point of

1.      Case I : moving down, and

2.      Case II: moving up.

Solution

              The angle of friction φ = tan -1 (0.3)

                                             = 16o 41′ 57′

                                                ∴ α > φ

Case I

 While the body is just on the point of moving down, the frictional force shall be acting upwards.

Resolving all the forces parallel to the inclined plane, we obtain

P1 + F1 - W sin 30o = 0

∴ P1 = 500 sin 30o - F1

= 250 - F1

1672_Resolving all of the forces normal to the inclined plane.gif

Resolving all of the forces normal to the inclined plane, we obtain

N1  - W cos 30o  = 0

∴ N1  = 500 cos 30o  = 433 N

∴ F1  = μ N1  = 0.3 × 433 = 129.9 N

Putting this in Eq. (7), we obtain

P1 = 250 - 129.9 = 120.1 N

Case II

While the body is just on the point of moving up, the frictional force shall be acting downwards.

Figure 3.12

Resolving all of the forces parallel to the inclined plane, we obtain

P2  - F2  - W sin 30o  = 0

∴ P2  = 500 sin 30o + F2  = 250 + F2

Resolving all of the forces normal to the inclined plane, we obtain

N 2  - W cos 30o  = 0

∴ N 2  = 500 cos 30o  = 433 N

∴ F2  = μ N 2  = 0.3 × 433 = 129.9 N

Putting the value of F2 in Eq. (9), we obtain

P2  = 250 + 129.9 = 379.9 N

Therefore, it is seen that while the force applied is 379.9 N or more the body shall move up and while it is 120.1 N or less it shall move down. While the force applied is between 120.1 N and 379.9 N, the body shall neither move upwards nor downwards, experiencing variable friction varying from 129.9 N acting upwards reducing to zero and then increasing up to 129.9 N acting downwards.

The mistake most often made in the solution of problems involving friction is to write the frictional force in the form F = μ N. This is to be remembered that only in case of impending or actual sliding motion of bodies with respect to one another the frictional force shall be maximum, i.e. Fmax = μ N. In all other cases, the frictional force working on a body is found by solving the equations of static equilibrium of the body.

Posted Date: 1/28/2013 5:28:53 AM | Location : United States







Related Discussions:- Resolving all of the forces normal to the inclined plane, Assignment Help, Ask Question on Resolving all of the forces normal to the inclined plane, Get Answer, Expert's Help, Resolving all of the forces normal to the inclined plane Discussions

Write discussion on Resolving all of the forces normal to the inclined plane
Your posts are moderated
Related Questions
Q. Show the design of the control rooms? The design of the control rooms in any plant is very important. The control room operator(s) must be able to control and manage safety

1.Two machining operations, A (3 minutes per part) and B (10 minutes per part), are performed sequentially to manufacture a part. Machines A and B produce 5% and 6% defective items

Q. Explain the Cushion Materials which used in moulding sand? These materials when added to the moulding sand burn and from gases when the molten metal is poured into the mould

function of helium shielding gas

Illustrate Newton's law of viscosity. Explain the importance of viscosity in fluid motion. Describe the effects of temperature on viscosity of water and that of air? Discuss hyd

Q. What do you mean by Stage Discharge Relationship? Regular recording of discharges over a period of time is essential for estimation of water resources of river basins and su

Principal Planes and Principal Stresses: Define the Principal Planes and Principal Stresses. Sol.: When an element in strained body is under action of plane stresses, it i

Motion of this particle: A particle of mass m is resting on a smooth horizontal plane as illustrated in Figure (a). It is associated to a spring which has a constant of k in f

Question: The disk 3 shown in the figure rotates at a constant angular velocity ω 3 = 2.0 rad/s. A slider in a slot in the disk causes rod 2 to rotate.  When the slider is