Resolving all of the forces normal to the inclined plane, Mechanical Engineering

Resolving all of the forces normal to the inclined plane:

A body weighing 500 N is resting on an inclined plane making an angle of 30o with the horizontal. The coefficient of friction is equal to 0.3. A force P is applied parallel to & up the inclined plane. Determine the least value of P while the body is just on the point of

1.      Case I : moving down, and

2.      Case II: moving up.

Solution

              The angle of friction φ = tan -1 (0.3)

                                             = 16o 41′ 57′

                                                ∴ α > φ

Case I

 While the body is just on the point of moving down, the frictional force shall be acting upwards.

Resolving all the forces parallel to the inclined plane, we obtain

P1 + F1 - W sin 30o = 0

∴ P1 = 500 sin 30o - F1

= 250 - F1

1672_Resolving all of the forces normal to the inclined plane.gif

Resolving all of the forces normal to the inclined plane, we obtain

N1  - W cos 30o  = 0

∴ N1  = 500 cos 30o  = 433 N

∴ F1  = μ N1  = 0.3 × 433 = 129.9 N

Putting this in Eq. (7), we obtain

P1 = 250 - 129.9 = 120.1 N

Case II

While the body is just on the point of moving up, the frictional force shall be acting downwards.

Figure 3.12

Resolving all of the forces parallel to the inclined plane, we obtain

P2  - F2  - W sin 30o  = 0

∴ P2  = 500 sin 30o + F2  = 250 + F2

Resolving all of the forces normal to the inclined plane, we obtain

N 2  - W cos 30o  = 0

∴ N 2  = 500 cos 30o  = 433 N

∴ F2  = μ N 2  = 0.3 × 433 = 129.9 N

Putting the value of F2 in Eq. (9), we obtain

P2  = 250 + 129.9 = 379.9 N

Therefore, it is seen that while the force applied is 379.9 N or more the body shall move up and while it is 120.1 N or less it shall move down. While the force applied is between 120.1 N and 379.9 N, the body shall neither move upwards nor downwards, experiencing variable friction varying from 129.9 N acting upwards reducing to zero and then increasing up to 129.9 N acting downwards.

The mistake most often made in the solution of problems involving friction is to write the frictional force in the form F = μ N. This is to be remembered that only in case of impending or actual sliding motion of bodies with respect to one another the frictional force shall be maximum, i.e. Fmax = μ N. In all other cases, the frictional force working on a body is found by solving the equations of static equilibrium of the body.

Posted Date: 1/28/2013 5:28:53 AM | Location : United States







Related Discussions:- Resolving all of the forces normal to the inclined plane, Assignment Help, Ask Question on Resolving all of the forces normal to the inclined plane, Get Answer, Expert's Help, Resolving all of the forces normal to the inclined plane Discussions

Write discussion on Resolving all of the forces normal to the inclined plane
Your posts are moderated
Related Questions
Cast Iron Electrodes There are three types of electrodes for welding of cast ions. a) Monel-cored electrodes (30 % Ni 70 % Cu) b) Fe-Ni (40 % Ni) c) Ni-electrodes (97 E) These

Hi there could I please get a quote for the attached Electrical assignment please. Particular attention needs to be taken in terms of the instructions

What is the total value added by the new workshop in Year 1 of the 5-year plan? Assuming that the average quarterly demand is maintained over the remaining years of the 5-year p

Explain the Open system - Thermodynamic The system that can exchange both of the mass and energy that is Heat and work with its surrounding, the mass in the system may not be c

Question: The disk 3 shown in the figure rotates at a constant angular velocity ω 3 = 2.0 rad/s. A slider in a slot in the disk causes rod 2 to rotate.  When the slider is


LIMITATIONS OF GAS TUNGSTEN ARC WELDING (GTAW) It Produces lower deposition rates than consumable electrode arc welding processes. It Requires slightly more skill as comp

Q. Applications of high temperature materials? A brief description of materials of construction used for common high temperature components in furnaces, boilers, superheaters,

Evaluate Elongation of wire: An aerial copper wire ( E =1 x 10 5 N/m m 2 ) 40 m long is having cross sectional area of 80 mm 2 and weighs 0.6 N per meter run. I

Calculate the value of force - frictionless  A block weighing 5KN is attached to the chord that passes over the frictionless pulley, and supports weight of 2KN. The coeffic