Resolving all of the forces normal to the inclined plane, Mechanical Engineering

Resolving all of the forces normal to the inclined plane:

A body weighing 500 N is resting on an inclined plane making an angle of 30o with the horizontal. The coefficient of friction is equal to 0.3. A force P is applied parallel to & up the inclined plane. Determine the least value of P while the body is just on the point of

1.      Case I : moving down, and

2.      Case II: moving up.

Solution

              The angle of friction φ = tan -1 (0.3)

                                             = 16o 41′ 57′

                                                ∴ α > φ

Case I

 While the body is just on the point of moving down, the frictional force shall be acting upwards.

Resolving all the forces parallel to the inclined plane, we obtain

P1 + F1 - W sin 30o = 0

∴ P1 = 500 sin 30o - F1

= 250 - F1

1672_Resolving all of the forces normal to the inclined plane.gif

Resolving all of the forces normal to the inclined plane, we obtain

N1  - W cos 30o  = 0

∴ N1  = 500 cos 30o  = 433 N

∴ F1  = μ N1  = 0.3 × 433 = 129.9 N

Putting this in Eq. (7), we obtain

P1 = 250 - 129.9 = 120.1 N

Case II

While the body is just on the point of moving up, the frictional force shall be acting downwards.

Figure 3.12

Resolving all of the forces parallel to the inclined plane, we obtain

P2  - F2  - W sin 30o  = 0

∴ P2  = 500 sin 30o + F2  = 250 + F2

Resolving all of the forces normal to the inclined plane, we obtain

N 2  - W cos 30o  = 0

∴ N 2  = 500 cos 30o  = 433 N

∴ F2  = μ N 2  = 0.3 × 433 = 129.9 N

Putting the value of F2 in Eq. (9), we obtain

P2  = 250 + 129.9 = 379.9 N

Therefore, it is seen that while the force applied is 379.9 N or more the body shall move up and while it is 120.1 N or less it shall move down. While the force applied is between 120.1 N and 379.9 N, the body shall neither move upwards nor downwards, experiencing variable friction varying from 129.9 N acting upwards reducing to zero and then increasing up to 129.9 N acting downwards.

The mistake most often made in the solution of problems involving friction is to write the frictional force in the form F = μ N. This is to be remembered that only in case of impending or actual sliding motion of bodies with respect to one another the frictional force shall be maximum, i.e. Fmax = μ N. In all other cases, the frictional force working on a body is found by solving the equations of static equilibrium of the body.

Posted Date: 1/28/2013 5:28:53 AM | Location : United States







Related Discussions:- Resolving all of the forces normal to the inclined plane, Assignment Help, Ask Question on Resolving all of the forces normal to the inclined plane, Get Answer, Expert's Help, Resolving all of the forces normal to the inclined plane Discussions

Write discussion on Resolving all of the forces normal to the inclined plane
Your posts are moderated
Related Questions
Q. What are Preheat and interpass temperature? Preheat and interpass temperatures shall be in accordance with the applicable codes. Materials that require preheat for welding

Select a standard rolled steel I-section for the simply supported beam shown in figure below.  Select an appropriate factor of safety and material strength.  Include references for

Thermodynamic process - Thermodynamics: Thermodynamic system undergoes changes because of the energy and mass interactions. Thermodynamic state of system changes because of th

Evaluate Elongation of wire: An aerial copper wire ( E =1 x 10 5 N/m m 2 ) 40 m long is having cross sectional area of 80 mm 2 and weighs 0.6 N per meter run. I

steam boilar

Seam Welding Seam welding is different from spot welding by the fact that roller type electrodes are used in the former case. The principle and process of welding are the same


2 x 2 m square gate opens clockwise on a horizontal hinge located at point A, which is 100 mm below the centroid of the gate. The gate sits against solid rubber blocks which create

calibration curve standard temparature vs indicator temprature.

Explain with neat sketches the various types of crystal imperfections