Relation between 2-d euclidean system and homogeneous system, Computer Graphics

Relation between 2-D Euclidean system and Homogeneous coordinate system

Suppose that P(x,y) be any point in 2-D Euclidean system. In HCS, we add a third coordinate to the point. In place of (x,y), all points are represented via a triple (x,y,H) so H≠0; along with the condition as (x1,y1,H1)=(x2,y2,H2) ↔ x1/H1 = x2/H2 ; y1/H1 = y2/H2. In two dimensions the value of H is generally remained at 1 for simplicity. If we take H=0 now, then this presents point at infinity, which is generation of horizons.

The subsequent table demonstrates an association between 2-D Euclidean (Cartesian coordinate) system and Homogeneous coordinate system.

2-D Euclidian System                                        Homogeneous Coordinate System (HCS)

Any point (x,y)                         →                                             (x,y,1)

If (x,y,H) be any point in HCS(such that H≠0);

                                                                                    then (x,y,H)=(x/H,y/H,1), which is

(x/H,y/H)                        ←                                                                     (x,y,H)

Any one point (x,y) → (x+tx,y+ty) in 2-D Euclidian system. By using Homogeneous coordinate system, this translation transformation can be presented as (x,y,1) → (x+tx,y+ty,1). In two dimensions the value of H is generally maintained at 1 for simplicity. Here, we are capable to represent this translation transformation in matrix form as:

242_Relation between 2-D Euclidean (Cartesian) system and Homogeneous coordinate system 2.png

 (x',y',1)=(x,y,1)

P'h=Ph.Tv    

Here P'h and Ph   demonstrate here object points in Homogeneous Coordinates and Tv is termed as homogeneous transformation matrix for translation. Consequently, P'h, the new coordinates of a transformed object, can be determined by multiplying earlier object coordinate matrix, Ph, along with the transformation matrix for translation Tv.

The benefit of initiating the matrix form of translation is to simplify the operations on complicated objects which are, we can now build complicated transformations by multiplying the basic matrix transformations. Such process is termed as concatenation of matrices and the resulting matrix is frequently referred as the composite transformation matrix.

Posted Date: 4/3/2013 4:15:45 AM | Location : United States







Related Discussions:- Relation between 2-d euclidean system and homogeneous system, Assignment Help, Ask Question on Relation between 2-d euclidean system and homogeneous system, Get Answer, Expert's Help, Relation between 2-d euclidean system and homogeneous system Discussions

Write discussion on Relation between 2-d euclidean system and homogeneous system
Your posts are moderated
Related Questions
Photo Editing Photo-editing programs are paint programs: it just like they comprise several sophisticated functions for altering images and for scheming aspects of the image,

Important points for Bresenham Line Generation Algorithm Note: Bresenhams algorithm is generalised to lines along with arbitrary slopes with identifying the symmetry

Cel Animation - Computer Animation Making an animation by using this method, all characters are drawn on a separate piece of transparent paper. Also a background is drawn on a

explain the working procedure of crt digram

Introduction To Computer Graphics Early man employed drawings to communicate even before he learnt to communicate, write or count. Incidentally, these earliest hierogly

Shading - Polygon Rendering and Ray Tracing Methods When one thing is under the exposure of light, so the rays of light are distributed over the surface and there the distribu


Parallel Projection In parallel projection, objects in scene are projected onto the 2D view plane along rays parallel to a projection vector. Parallel projection is orthogra

Definitions of Hypertext A manner of presenting information online along with links among one piece of information and the other. These links are termed as hypertext links

What is reflection and clipping? The reflection is actually the transformation that makes a mirror image of an object. For this use some angles and lines of reflection.  Cli