Re-heat nozzles in aircraft engine, Other Engineering

Re-Heat Nozzles :

If re-heat was fitted to an engine with a standard sized fixed area propelling nozzle, the expansion of gases caused by the use of re-heat would increase the pressure in the jet pipe and reduce the pressure drop across the turbine (turbine expansion ratio). A reduced turbine expansion ratio will slow down the turbine and consequently lower the engine power. It would also increase the back pressure on the rear stage of the compressor which would cause the compressor to surge. To avoid a rise in pressure at the turbine outlet, the area of the propelling nozzle must be enlarged when re-heat is in use. Thus the propelling nozzle of a re-heat engine must be able to provide a nozzle area suitable for normal running without re-heat and a larger nozzle area when re-heat is used. Re-heat can usually be selected only after the throttle lever has passed through a normal 100% position. Therefore the smallest nozzle area must be efficient at normal maximum power and the large nozzle area must cater for the re-heat gas flow. If the amount of re-heat can be varied, then the re-heat nozzle must change to match the amount of re-heat selected.

Variable Area Nozzles

The variable propelling nozzle is suitable for use with controllable re-heat systems because it can provide a variable nozzle area to match the amount of re-heat selected. The circular continuity of the nozzle is maintained by a system of hinged flaps. The nozzle area is reduced by positive mechanical means but it is enlarged by the exhaust gas pressure acting upon the inside surface of the flaps.

A ring of hinged master flaps is interleaved with a ring of hinged sealing flaps to provide a variable area propelling nozzle. Each flap is hinged at its forward edge so that the rear edge can move inwards to reduce the nozzle area, or outwards to increase the nozzle area. 

Actuation of the nozzle system can be hydraulic using oil or fuel as the fluid medium, or an air motor driving screw jacks.
On selection of reheat the nozzle will move first to prevent back pressure on the engine, when it has moved the fuel will be supplied. With any increase in reheat the nozzle moves then the fuel follows. When reheat is reduced the opposite occurs first the fuel reduces then the nozzle closes. This ensures the nozzle area is too large rather than too small for any change in fuel flow.

 

112_reheat nozzal.png

Posted Date: 9/12/2012 5:44:30 AM | Location : United States







Related Discussions:- Re-heat nozzles in aircraft engine, Assignment Help, Ask Question on Re-heat nozzles in aircraft engine, Get Answer, Expert's Help, Re-heat nozzles in aircraft engine Discussions

Write discussion on Re-heat nozzles in aircraft engine
Your posts are moderated
Related Questions
how rayleigh scattering occurs in optical fiber cable

what is the equation relating the real exchange rate to the nominal exchange rate and domestic and foreign price levels

Q. Why is it desirable to design a casting to have directional solidification sweeping from the extremities of the mould to riser based on Chvorinov's rule? What would be an ideal

Assignment: You are interested in proposing a new venture to the management of your company. Pertinent financial information is given below. BALANCE SHEET Cash 2,000,000 Accounts

Q.   Discuss briefly the causes and remedies of Shrinkage cavities casting defects.                                                 OR  Why shrinkage cavities are caus

could help me to write a project specification of class B audio amplifier, if I am going to do a project of class B audio amplifier?

method of solving resection

what is the answer for 2+2=?

simplify using k-map f=sum(0,4,5,6,9,10,12)+d(1,15)

Given data for an F-4 (W=40000 lb, S=530 ft^2, Ta@sea level=35800 lb, Mach=1.5, h=20000 ft (std day), Cd0=.0224, k=.1516) find aircraft''s specific excess power in straight-and-lev