Pumping lemma, Theory of Computation

For every regular language there is a constant n depending only on L such that, for all strings x ∈ L if |x| ≥ n then there are strings u, v and w such that

1. x = uvw,

2. |uv| ≤ n,

3. |v| ≥ 1,

4. for all i ≥ 0, uviw ∈ L.

What this says is that if there is any string in L "long enough" then there is some family of strings of related form that are all in L, that is, that there is some way of breaking the string into segments uvw for which uvi w is in L for all i. It does not say that every family of strings of related form is in L, that uvi w will be in L for every way of breaking the string into three segments uvw.

Posted Date: 3/21/2013 1:39:28 AM | Location : United States







Related Discussions:- Pumping lemma, Assignment Help, Ask Question on Pumping lemma, Get Answer, Expert's Help, Pumping lemma Discussions

Write discussion on Pumping lemma
Your posts are moderated
Related Questions
A Turing machine is a theoretical computing machine made-up by Alan Turing (1937) to serve as an idealized model for mathematical calculation. A Turing machine having of a line of

Myhill graphs also generalize to the SLk case. The k-factors, however, cannot simply denote edges. Rather the string σ 1 σ 2 ....... σ k-1 σ k asserts, in essence, that if we hav

The fact that regular languages are closed under Boolean operations simpli?es the process of establishing regularity of languages; in essence we can augment the regular operations

The language accepted by a NFA A = (Q,Σ, δ, q 0 , F) is NFAs correspond to a kind of parallelism in the automata. We can think of the same basic model of automaton: an inpu

For example, the question of whether a given regular language is positive (does not include the empty string) is algorithmically decidable. "Positiveness Problem". Note that

The universe of strings is a very useful medium for the representation of information as long as there exists a function that provides the interpretation for the information carrie

The Equivalence Problem is the question of whether two languages are equal (in the sense of being the same set of strings). An instance is a pair of ?nite speci?cations of regular

The fact that SL 2 is closed under intersection but not under union implies that it is not closed under complement since, by DeMorgan's Theorem L 1 ∩ L 2 = We know that

Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG too. Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the sec

Automata and Compiler (1) [25 marks] Let N be the last two digits of your student number. Design a finite automaton that accepts the language of strings that end with the last f