Pumping lemma, Theory of Computation

For every regular language there is a constant n depending only on L such that, for all strings x ∈ L if |x| ≥ n then there are strings u, v and w such that

1. x = uvw,

2. |uv| ≤ n,

3. |v| ≥ 1,

4. for all i ≥ 0, uviw ∈ L.

What this says is that if there is any string in L "long enough" then there is some family of strings of related form that are all in L, that is, that there is some way of breaking the string into segments uvw for which uvi w is in L for all i. It does not say that every family of strings of related form is in L, that uvi w will be in L for every way of breaking the string into three segments uvw.

Posted Date: 3/21/2013 1:39:28 AM | Location : United States







Related Discussions:- Pumping lemma, Assignment Help, Ask Question on Pumping lemma, Get Answer, Expert's Help, Pumping lemma Discussions

Write discussion on Pumping lemma
Your posts are moderated
Related Questions

A context free grammar G = (N, Σ, P, S)  is in binary form if for all productions A we have |α| ≤ 2. In addition we say that G is in Chomsky Normaml Form (CNF) if it is in bi

Given any NFA A, we will construct a regular expression denoting L(A) by means of an expression graph, a generalization of NFA transition graphs in which the edges are labeled with

The class of Strictly Local Languages (in general) is closed under • intersection but is not closed under • union • complement • concatenation • Kleene- and positive

Let L 3 = {a i bc j | i, j ≥ 0}. Give a strictly 2-local automaton that recognizes L 3 . Use the construction of the proof to extend the automaton to one that recognizes L 3 . Gi

One might assume that non-closure under concatenation would imply non closure under both Kleene- and positive closure, since the concatenation of a language with itself is included

We saw earlier that LT is not closed under concatenation. If we think in terms of the LT graphs, recognizing the concatenation of LT languages would seem to require knowing, while

Let there L1 and L2 . We show that L1 ∩ L2 is CFG . Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the second

The path function δ : Q × Σ*→ P(Q) is the extension of δ to strings: Again, this just says that to ?nd the set of states reachable by a path labeled w from a state q in an

The universe of strings is a very useful medium for the representation of information as long as there exists a function that provides the interpretation for the information carrie