Powerset construction, Theory of Computation

As de?ned the powerset construction builds a DFA with many states that can never be reached from Q′0. Since they cannot be reached from Q′0 there is no path from Q′0 to a state in F′ which passes through them and they can be deleted from the automaton without changing the language it accepts. In practice it is much easier to build Q′ as needed, only including those state sets that actually are needed.

To see how this works, lets carry out an example. For maximum generality, let's start with the NFA with ε-transitions given above, repeated here:

1876_Powerset Construction.png

Because it is simpler to write the transition function (δ) out as a table than it is to write out the transition relation (T) as a set of tuples, we will work with the δ representation. When given a transition graph of an NFA with ε-transitions like this there are 6 steps required to reduce it to a DFA:

1. Write out the transition function and set of ?nal states of the NFA.

2. Convert it to an NFA without ε-transitions.

(a) Compute the ε-Closure of each state in the NFA.

(b) Compute the transition function of the equivalent NFA without ε-transitions.

(c) Compute the set of ?nal states of the equivalent NFA without ε- transitions.

Posted Date: 3/21/2013 2:58:20 AM | Location : United States







Related Discussions:- Powerset construction, Assignment Help, Ask Question on Powerset construction, Get Answer, Expert's Help, Powerset construction Discussions

Write discussion on Powerset construction
Your posts are moderated
Related Questions
Lemma 1 A string w ∈ Σ* is accepted by an LTk automaton iff w is the concatenation of the symbols labeling the edges of a path through the LTk transition graph of A from h?, ∅i to

#can you solve a problem of palindrome using turing machine with explanation and diagrams?

Explain Theory of Computation ,Overview of DFA,NFA, CFG, PDA, Turing Machine, Regular Language, Context Free Language, Pumping Lemma, Context Sensitive Language, Chomsky Normal For

The Universality Problem is the dual of the emptiness problem: is L(A) = Σ∗? It can be solved by minor variations of any one of the algorithms for Emptiness or (with a little le


can you plz help with some project ideas relatede to DFA or NFA or anything


how many pendulum swings will it take to walk across the classroom?


Generate 100 random numbers with the exponential distribution lambda=5.0.What is the probability that the largest of them is less than 1.0?