Poisson distribution function, Civil Engineering

Poisson distribution function:

Let XI, X2, ..., X,& b e n independently and identically distributed random variables each having the same cdf F ( x ). What is the pdf of the largest of the xi'?


Let Y = maximum (XI, X2, ..., Xn, )

Since Y ≤ y implies Xl ≤ y, X2 ≤y, ..., Xn ≤ y, we have

Fy(y )= P(Y ≤ y) = P(XI ≤ y,X2 ≤ y, ..., Xn ≤ y )

= P(X1 ≤ y) P(X2 ≤ y) ... P(Xn ≤ y),

since XI, X2, ..., Xn, are independent

= {F(y)}n, since the cdf of each Xi is F(x).

 Hence the pdf of Y is

fy (y) = F'(y) = n{F(y)}n-1 f(y),

where f ( y ) = F'( y ) is the pdf of Xi.

6.2.2 The Method of Probability Density Function (Approach 2)

For a univariate continuous random variable x having the pdf' fx ( x ) and the cdf Fx (x), we have

F'x(x)= (d/dx ) dFx(x) or dFx(x) = fx (x) dx

In other words, differential dFx (x) represents the element of probability that X assumes a value in an infinitesimal interval of width dx in the neighbourhood of X = x.

For a one-to-one transformation y = g ( x ), there exists an inverse transformation x = g - 1 ( y ), so that under the transformation as x changes to y, dx changes to dg-1(y)/dy and

dF (x) = f(x) dx = fx (g-1(y))¦dg-1(y)/dy¦ dy

The absolute value of dg-1(y)/dy is taken because may be negative and fx ( x ) and d Fx ( x ) are always positive. As X, lying in an interval of width dx in the neighbourhood of X = x, changes to y, that lies in the corresponding interval of width dy in the neighbourhood of Y = y, the element of probability dFx ( x ) and dFy ( y ) remain the same where Fy ( y ) is 1 cdf of Y. Hence

dFy(y) = dFx(x) = fx(g-1(y)) ¦ dg-1(y)/dy¦ dy


fy(y) = d/dy Fy(y) = fx (g-1 (y)) ¦ dg-1(y)/dy¦                                         (6.2)

Equation (6.2) may be used to find the pdf of a one to one function of a random variable. The method could be generalized to the multivariate case to obtain the result that gives the joint pdf of transformed vector random variable Y under the one to one transformation Y - G ( X ) , in terms of the joint pdf of X The generalized result is stated below

fy(y) = fx(G-1 (y))1/¦J¦

where the usual notations and conventions for the Jacobian J = ¦ð y/ð x¦ are assumed


This technique is applicable hust to continuous random variables and only if the functions of random variable Y = G (X) define a one to one transformation of the region where the pdf of X is non zero.

Posted Date: 1/30/2013 7:04:30 AM | Location : United States

Related Discussions:- Poisson distribution function, Assignment Help, Ask Question on Poisson distribution function, Get Answer, Expert's Help, Poisson distribution function Discussions

Write discussion on Poisson distribution function
Your posts are moderated
Related Questions
Question Have to emulsified asphalts or cutback asphalts be selected as staple coat in bituminous road works? Answer Emulsified asphalt is a postponement of asphalt

define Fathometer in civil engineering field #Minimum 100 words accepted#

Spatial Structures Loading Dead load Dead loads include the weight of permanent components such as elements and spheres weight, casing weight, false ceiling weight and uti

Q. Differences between open shield and closed shield? Open shield type TBM refers to those providing lateral support only. They can be further classified into single shield and

Acid Test: This test is usually carried out on sand stones to examine the presence of calcium carbonate that weakens the weather resisting quality. In this particular  test,

what is plastic?its types and composition and its uses as engineering material

types of dams

Define the Categories of Corrosion of steel structures? Corrosion of steel structures can be classified as under: -   Atmospheric corrosion -   Underwater corrosion -

What will be the structural weight per meter for IRC class 70r bridge

Explain Hardness - Water Softening 1) Hardness is used to characterize a water that does not lather well, causes a scum in the bath tub and leaves hard, white, crusty deposits