Poisson distribution function, Civil Engineering

Poisson distribution function:

Let XI, X2, ..., X,& b e n independently and identically distributed random variables each having the same cdf F ( x ). What is the pdf of the largest of the xi'?

Solution:

Let Y = maximum (XI, X2, ..., Xn, )

Since Y ≤ y implies Xl ≤ y, X2 ≤y, ..., Xn ≤ y, we have

Fy(y )= P(Y ≤ y) = P(XI ≤ y,X2 ≤ y, ..., Xn ≤ y )

= P(X1 ≤ y) P(X2 ≤ y) ... P(Xn ≤ y),

since XI, X2, ..., Xn, are independent

= {F(y)}n, since the cdf of each Xi is F(x).

 Hence the pdf of Y is

fy (y) = F'(y) = n{F(y)}n-1 f(y),

where f ( y ) = F'( y ) is the pdf of Xi.

6.2.2 The Method of Probability Density Function (Approach 2)

For a univariate continuous random variable x having the pdf' fx ( x ) and the cdf Fx (x), we have

F'x(x)= (d/dx ) dFx(x) or dFx(x) = fx (x) dx

In other words, differential dFx (x) represents the element of probability that X assumes a value in an infinitesimal interval of width dx in the neighbourhood of X = x.

For a one-to-one transformation y = g ( x ), there exists an inverse transformation x = g - 1 ( y ), so that under the transformation as x changes to y, dx changes to dg-1(y)/dy and

dF (x) = f(x) dx = fx (g-1(y))¦dg-1(y)/dy¦ dy

The absolute value of dg-1(y)/dy is taken because may be negative and fx ( x ) and d Fx ( x ) are always positive. As X, lying in an interval of width dx in the neighbourhood of X = x, changes to y, that lies in the corresponding interval of width dy in the neighbourhood of Y = y, the element of probability dFx ( x ) and dFy ( y ) remain the same where Fy ( y ) is 1 cdf of Y. Hence

dFy(y) = dFx(x) = fx(g-1(y)) ¦ dg-1(y)/dy¦ dy

and

fy(y) = d/dy Fy(y) = fx (g-1 (y)) ¦ dg-1(y)/dy¦                                         (6.2)

Equation (6.2) may be used to find the pdf of a one to one function of a random variable. The method could be generalized to the multivariate case to obtain the result that gives the joint pdf of transformed vector random variable Y under the one to one transformation Y - G ( X ) , in terms of the joint pdf of X The generalized result is stated below

fy(y) = fx(G-1 (y))1/¦J¦

where the usual notations and conventions for the Jacobian J = ¦ð y/ð x¦ are assumed

Remarks:

This technique is applicable hust to continuous random variables and only if the functions of random variable Y = G (X) define a one to one transformation of the region where the pdf of X is non zero.

Posted Date: 1/30/2013 7:04:30 AM | Location : United States







Related Discussions:- Poisson distribution function, Assignment Help, Ask Question on Poisson distribution function, Get Answer, Expert's Help, Poisson distribution function Discussions

Write discussion on Poisson distribution function
Your posts are moderated
Related Questions
Q. What do you mean by GGBS – cement replacement? From structural point of view GGBS replacement enhances higher durability, lower heat of hydration and higher resistance to su

Determine the total head and total pressure of water flowing at  in a pipe which has the following data: Flow= 2,500 gpm; Elevation = 30 ft; Pressure = 40 psi; Pipe Diameter =

Question Which category of bars reinforcement are more corrosion resistant , epoxy-coated bars, stainless steel bars, galvanized bars? Answer Supported on experiment conducte

Magnitude of torque - bending moment: A prismatic bar of hollow circular cross-section along with outer and inner diameters 100 mm and 80 mm correspondingly, carries a bending

A completely saturated sample of clay has a volume of 31.25 cm 3 and a weight of 0.5866 N. The same sample after drying has a volume of 23.92 cm 3 and a weight of 0.4281 N. Compu


Lock Entrance: Wet docks have lock entrances to overcome the high fluctuations in water level in the sea. Figure 7 gives a layout of a lock entrance. It consists of a lock cha

what classes do you have to take and what are some school options?

In bridge widening projects, means of stitching is normally employed for connecting existing deck to a new deck. What are the problems that occur connected with this process in ter

isolated footing