Poisson distribution function, Civil Engineering

Poisson distribution function:

Let XI, X2, ..., X,& b e n independently and identically distributed random variables each having the same cdf F ( x ). What is the pdf of the largest of the xi'?

Solution:

Let Y = maximum (XI, X2, ..., Xn, )

Since Y ≤ y implies Xl ≤ y, X2 ≤y, ..., Xn ≤ y, we have

Fy(y )= P(Y ≤ y) = P(XI ≤ y,X2 ≤ y, ..., Xn ≤ y )

= P(X1 ≤ y) P(X2 ≤ y) ... P(Xn ≤ y),

since XI, X2, ..., Xn, are independent

= {F(y)}n, since the cdf of each Xi is F(x).

 Hence the pdf of Y is

fy (y) = F'(y) = n{F(y)}n-1 f(y),

where f ( y ) = F'( y ) is the pdf of Xi.

6.2.2 The Method of Probability Density Function (Approach 2)

For a univariate continuous random variable x having the pdf' fx ( x ) and the cdf Fx (x), we have

F'x(x)= (d/dx ) dFx(x) or dFx(x) = fx (x) dx

In other words, differential dFx (x) represents the element of probability that X assumes a value in an infinitesimal interval of width dx in the neighbourhood of X = x.

For a one-to-one transformation y = g ( x ), there exists an inverse transformation x = g - 1 ( y ), so that under the transformation as x changes to y, dx changes to dg-1(y)/dy and

dF (x) = f(x) dx = fx (g-1(y))¦dg-1(y)/dy¦ dy

The absolute value of dg-1(y)/dy is taken because may be negative and fx ( x ) and d Fx ( x ) are always positive. As X, lying in an interval of width dx in the neighbourhood of X = x, changes to y, that lies in the corresponding interval of width dy in the neighbourhood of Y = y, the element of probability dFx ( x ) and dFy ( y ) remain the same where Fy ( y ) is 1 cdf of Y. Hence

dFy(y) = dFx(x) = fx(g-1(y)) ¦ dg-1(y)/dy¦ dy

and

fy(y) = d/dy Fy(y) = fx (g-1 (y)) ¦ dg-1(y)/dy¦                                         (6.2)

Equation (6.2) may be used to find the pdf of a one to one function of a random variable. The method could be generalized to the multivariate case to obtain the result that gives the joint pdf of transformed vector random variable Y under the one to one transformation Y - G ( X ) , in terms of the joint pdf of X The generalized result is stated below

fy(y) = fx(G-1 (y))1/¦J¦

where the usual notations and conventions for the Jacobian J = ¦ð y/ð x¦ are assumed

Remarks:

This technique is applicable hust to continuous random variables and only if the functions of random variable Y = G (X) define a one to one transformation of the region where the pdf of X is non zero.

Posted Date: 1/30/2013 7:04:30 AM | Location : United States







Related Discussions:- Poisson distribution function, Assignment Help, Ask Question on Poisson distribution function, Get Answer, Expert's Help, Poisson distribution function Discussions

Write discussion on Poisson distribution function
Your posts are moderated
Related Questions
Explain briefly shallow foundation?

what is the procedure for gsb proctor test for matrial sampling for lab density

Cargo Handling Facilities: All water transport terminals require cargo handling facilities. Cranes of various sizes are used. In docks, traveling cranes are popular (Figure).

Cost-volume relationship: Cost-volume relationship is illustrated through a simple example dealing with the cost of operating an automobile. To perform the analysis following

Q. By which Materials Shank of a spur construct? Shank of a spur is constructed of sand core and its exposed faces are protected by stone pitching. The attack at nose is very h


size of sieve to analysis the grading of 10 mm size stone grit


What is exogenous tree?

A raft of size 4 m-square carries a load of 200 kN/m 2 . Verify the vertical stress increment at a point 4 m below the centre of the loaded area using Boussinesq's theory. Compare