Poisson distribution function, Civil Engineering

Poisson distribution function:

Let XI, X2, ..., X,& b e n independently and identically distributed random variables each having the same cdf F ( x ). What is the pdf of the largest of the xi'?


Let Y = maximum (XI, X2, ..., Xn, )

Since Y ≤ y implies Xl ≤ y, X2 ≤y, ..., Xn ≤ y, we have

Fy(y )= P(Y ≤ y) = P(XI ≤ y,X2 ≤ y, ..., Xn ≤ y )

= P(X1 ≤ y) P(X2 ≤ y) ... P(Xn ≤ y),

since XI, X2, ..., Xn, are independent

= {F(y)}n, since the cdf of each Xi is F(x).

 Hence the pdf of Y is

fy (y) = F'(y) = n{F(y)}n-1 f(y),

where f ( y ) = F'( y ) is the pdf of Xi.

6.2.2 The Method of Probability Density Function (Approach 2)

For a univariate continuous random variable x having the pdf' fx ( x ) and the cdf Fx (x), we have

F'x(x)= (d/dx ) dFx(x) or dFx(x) = fx (x) dx

In other words, differential dFx (x) represents the element of probability that X assumes a value in an infinitesimal interval of width dx in the neighbourhood of X = x.

For a one-to-one transformation y = g ( x ), there exists an inverse transformation x = g - 1 ( y ), so that under the transformation as x changes to y, dx changes to dg-1(y)/dy and

dF (x) = f(x) dx = fx (g-1(y))¦dg-1(y)/dy¦ dy

The absolute value of dg-1(y)/dy is taken because may be negative and fx ( x ) and d Fx ( x ) are always positive. As X, lying in an interval of width dx in the neighbourhood of X = x, changes to y, that lies in the corresponding interval of width dy in the neighbourhood of Y = y, the element of probability dFx ( x ) and dFy ( y ) remain the same where Fy ( y ) is 1 cdf of Y. Hence

dFy(y) = dFx(x) = fx(g-1(y)) ¦ dg-1(y)/dy¦ dy


fy(y) = d/dy Fy(y) = fx (g-1 (y)) ¦ dg-1(y)/dy¦                                         (6.2)

Equation (6.2) may be used to find the pdf of a one to one function of a random variable. The method could be generalized to the multivariate case to obtain the result that gives the joint pdf of transformed vector random variable Y under the one to one transformation Y - G ( X ) , in terms of the joint pdf of X The generalized result is stated below

fy(y) = fx(G-1 (y))1/¦J¦

where the usual notations and conventions for the Jacobian J = ¦ð y/ð x¦ are assumed


This technique is applicable hust to continuous random variables and only if the functions of random variable Y = G (X) define a one to one transformation of the region where the pdf of X is non zero.

Posted Date: 1/30/2013 7:04:30 AM | Location : United States

Related Discussions:- Poisson distribution function, Assignment Help, Ask Question on Poisson distribution function, Get Answer, Expert's Help, Poisson distribution function Discussions

Write discussion on Poisson distribution function
Your posts are moderated
Related Questions
Define Safety Precautions for Underwater Inspection of Bridge? The working agency should have its own diving safety manual, which should be strictly followed. This manual shoul

State the Modulus of Elasticity of Concrete The Young's modulus of elasticity of concrete is primarily influenced by the elastic properties of the aggregate and to a lesser ex

compare riveted joints with welded joints

write algorithm and flowchart that displays your name 10 times

Q- What is the difference between painting, polishing and varnishing as for as woodwork is concerned? What are their advantages and disadvantage? Ans. - Painting - P

what is the classification of lintel

Determine elongation because of self weight of bar:

Q. Method of construction of a bored cast-in-situ concrete pile? Ans. - Bored cast-in-situ concrete pile - A guide casing of 3 to 4 m length is provided on top of the bore hole

Explain the Analysis of Singly Reinforced Rectangular Beams: 1. Determine the area of steel reinforcement, As. Multiply the number of bars by the area of each bar. 2. Calcul

Features of literary writing