Poisson distribution function, Civil Engineering

Poisson distribution function:

Let XI, X2, ..., X,& b e n independently and identically distributed random variables each having the same cdf F ( x ). What is the pdf of the largest of the xi'?


Let Y = maximum (XI, X2, ..., Xn, )

Since Y ≤ y implies Xl ≤ y, X2 ≤y, ..., Xn ≤ y, we have

Fy(y )= P(Y ≤ y) = P(XI ≤ y,X2 ≤ y, ..., Xn ≤ y )

= P(X1 ≤ y) P(X2 ≤ y) ... P(Xn ≤ y),

since XI, X2, ..., Xn, are independent

= {F(y)}n, since the cdf of each Xi is F(x).

 Hence the pdf of Y is

fy (y) = F'(y) = n{F(y)}n-1 f(y),

where f ( y ) = F'( y ) is the pdf of Xi.

6.2.2 The Method of Probability Density Function (Approach 2)

For a univariate continuous random variable x having the pdf' fx ( x ) and the cdf Fx (x), we have

F'x(x)= (d/dx ) dFx(x) or dFx(x) = fx (x) dx

In other words, differential dFx (x) represents the element of probability that X assumes a value in an infinitesimal interval of width dx in the neighbourhood of X = x.

For a one-to-one transformation y = g ( x ), there exists an inverse transformation x = g - 1 ( y ), so that under the transformation as x changes to y, dx changes to dg-1(y)/dy and

dF (x) = f(x) dx = fx (g-1(y))¦dg-1(y)/dy¦ dy

The absolute value of dg-1(y)/dy is taken because may be negative and fx ( x ) and d Fx ( x ) are always positive. As X, lying in an interval of width dx in the neighbourhood of X = x, changes to y, that lies in the corresponding interval of width dy in the neighbourhood of Y = y, the element of probability dFx ( x ) and dFy ( y ) remain the same where Fy ( y ) is 1 cdf of Y. Hence

dFy(y) = dFx(x) = fx(g-1(y)) ¦ dg-1(y)/dy¦ dy


fy(y) = d/dy Fy(y) = fx (g-1 (y)) ¦ dg-1(y)/dy¦                                         (6.2)

Equation (6.2) may be used to find the pdf of a one to one function of a random variable. The method could be generalized to the multivariate case to obtain the result that gives the joint pdf of transformed vector random variable Y under the one to one transformation Y - G ( X ) , in terms of the joint pdf of X The generalized result is stated below

fy(y) = fx(G-1 (y))1/¦J¦

where the usual notations and conventions for the Jacobian J = ¦ð y/ð x¦ are assumed


This technique is applicable hust to continuous random variables and only if the functions of random variable Y = G (X) define a one to one transformation of the region where the pdf of X is non zero.

Posted Date: 1/30/2013 7:04:30 AM | Location : United States

Related Discussions:- Poisson distribution function, Assignment Help, Ask Question on Poisson distribution function, Get Answer, Expert's Help, Poisson distribution function Discussions

Write discussion on Poisson distribution function
Your posts are moderated
Related Questions
friction circle method of stability of slope

Q. Corrosion protection of lifting anchors in precast concrete? Corrosion of lifting anchors in precast concrete units has to be prevented since the corroded lifting units caus

Q. Show the Functions of hydraulic jump? The usage of hydraulic jump in hydraulic engineering isn't uncommon and creation of such jumps has numerous purposes:  (i)  Its majo

Radial flow pumps for small flows and high heads In radial flow pumps, a diffuser/volute is generally designed at it outlet to convert the kinetic energy obtained during the pu

Explain the Hydraulic Radius (R) A fluid's cross-sectional area in flow divided by the wetted perimeter. For a circular channel flowing full and ½ full, R = D/4.

introduction of levelling

What is the easiest way to give proof the varignon''s theorem? Help please guys

investigation of strength properties of black cotton soil stabilised with fly ash and georeinforcement

I need some help sizing a rectangular plate that will distribute my load to the simply supported beams below.

A five-mile long section of two-lane road has an AADT of 8,000.  There have been six crashes on this section of road during the past two years.  What is the crash rate? R sec