Point-slope form, Mathematics

The next special form of the line which we have to look at is the point-slope form of the line. This form is extremely useful for writing the equation of any line.  If we know that a line passes through the point (x1 , y1 ) and has a slope of m then the point-slope form of the  equation of the line is,

                                           y - y1 = m ( x - x1 )

Sometimes it is written as,

                                        y = y1 + m ( x - x1 )

As stated earlier this form is specifically useful for writing down the equation of a line so let's take a look at an example of this.

Posted Date: 4/6/2013 5:58:02 AM | Location : United States

Related Discussions:- Point-slope form, Assignment Help, Ask Question on Point-slope form, Get Answer, Expert's Help, Point-slope form Discussions

Write discussion on Point-slope form
Your posts are moderated
Related Questions
Some Definitions of e 1. 2.   e is the unique +ve number for which 3. The second one is the significant one for us since that limit is exactly the limit

Consider the following interpolation problem: Find a quadratic polynomial p(x) such that p(x0) = y0 p’(x1) = y’1 , p(x2) = y2 where x0 is different from x2 and y0, y’1 , y2 a

Solution of Linear Equation How to solve a linear equation? Please assist me.

Q. Multiplying Mixed Numbers? Ans. Multiplying mixed numbers is a 3-step process: 1. Convert the mixed numbers to improper fractions 2. Multiply the fractions 3.

Non Zero Sum Games Recently there was no satisfactory theory either to describe how people should play non-zero games or to explain how they actually play that game Nigel Ho

Mark is preparing a walkway around his inground pool. The pool is 20 by 40 ft and the walkway is intended to be 4 ft wide. Determine the area of the walkway? a. 224 ft 2 b.

Solve the following Linear Programming Problem using Simple method. Maximize Z= 3x 1 + 2X 2 Subject to the constraints:                  X 1 + X 2 ≤ 4

Define symmetric, asymmetric and antisymmetric relations.    Ans: Symmetric Relation A relation R illustrated on a set A is said to be a symmetric relation if for any x,