Parks test, Advanced Statistics

The Null Hypothesis - H0: β1 = 0 i.e. there is homoscedasticity errors and no heteroscedasticity exists

The Alternative Hypothesis - H1: β1 ≠ 0 i.e. there is no homoscedasticity error and there is heteroscedasticity

Regression Analysis: lnsqresi versus lntotexp

The regression equation is

lnsqresi = - 4.82 - 0.301 lntotexp

Predictor     Coef  SE Coef      T      P    VIF

Constant   -4.8198   0.6893  -6.99  0.000

lntotexp   -0.3009   0.1523  -1.98  0.048  1.000

S = 2.26403   R-Sq = 0.3%   R-Sq(adj) = 0.2%

Analysis of Variance

 

Source            DF        SS      MS     F      P

Regression         1    20.015  20.015  3.90  0.048

Residual Error  1500  7688.739   5.126

  Lack of Fit     28   160.408   5.729  1.12  0.304

  Pure Error    1472  7528.331   5.114

Total           1501  7708.754

 

Since β1 ≠ 0 and is -0.301, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

Regression Analysis: lnsqresi versus lnage

The regression equation is

lnsqresi = - 7.75 + 0.442 lnage

Predictor     Coef  SE Coef      T      P    VIF

Constant   -7.7468   0.9747  -7.95  0.000

lnage       0.4419   0.2739   1.61  0.107  1.000

 

S = 2.26501   R-Sq = 0.2%   R-Sq(adj) = 0.1%

 

Analysis of Variance

 

Source               DF         SS        MS          F      P

Regression         1      13.355    13.355  2.60  0.107

Residual Error  1500  7695.399  5.130

  Lack of Fit        40    131.348   3.284   0.63  0.964

  Pure Error      1460  7564.051  5.181

Total          1501  7708.754

Since β1 ≠ 0 and is 0.442, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

Posted Date: 3/5/2013 6:10:42 AM | Location : United States







Related Discussions:- Parks test, Assignment Help, Ask Question on Parks test, Get Answer, Expert's Help, Parks test Discussions

Write discussion on Parks test
Your posts are moderated
Related Questions
Poisson regression In case of Poisson regression we use ηi = g(µi) = log(µi) and a variance V ar(Yi) = φµi. The case φ = 1 corresponds to standard Poisson model. Poisson regre

Mean squarederror is the expected value of square of the difference between an estimator and the true value of the parameter. If the estimator is unbiased then the mean of the squ

Window variables are the variables measured during the constrained interval of an observation period which is accepted as the proxies for the information over the whole period. Fo

An approach to investigations designed to recognize a particular medical condition in the large population, usually by means of a blood test, which might result in the considerable

Option-3 scheme is a scheme of measurement used in the situations investigating possible changes over the time in longitudinal data. The scheme is planned to prevent measurement o


Reinterviewing  is the second interview for a sample of survey respondents in which questions of the original interview (or the subset of them) are repeated again. The same methods

Hot deck is a method broadly used in surveys for imputing the missing values. In its easiest form the method includes sampling with replacement m values from the sample respondent

Non linear mapping (NLM ) is a technique for obtaining a low-dimensional representation of the set of multivariate data, which operates by minimizing a function of the differences

It is an informal method of assessing the effect of the publication bias, generally in the context of the meta-analysis. The effect measures from each of the reported study are plo