Parks test, Advanced Statistics

The Null Hypothesis - H0: β1 = 0 i.e. there is homoscedasticity errors and no heteroscedasticity exists

The Alternative Hypothesis - H1: β1 ≠ 0 i.e. there is no homoscedasticity error and there is heteroscedasticity

MTB > let c33=loge(c20)

MTB > let c34=loge(c7)

MTB > let c35=loge(c8)

MTB > let c36=loge(c9)

MTB > let c37=loge(c10)

C33 = lnsqres

C34 = lntotexp

C35 = lnincome

C36 = lnage

C37 = lnnk

 

Regression Analysis: lnsqres versus lntotexp

The regression equation is

lnsqres = - 5.41 - 0.155 lntotexp

 

Predictor     Coef  SE Coef      T      P

Constant   -5.4069   0.6430  -8.41  0.000

lntotexp   -0.1550   0.1420  -1.09  0.275

 

S = 2.15075   R-Sq = 0.1%   R-Sq(adj) = 0.0%

Analysis of Variance

Source               DF        SS     MS     F      P

Regression         1     5.515  5.515  1.19  0.275

Residual Error  1517  7017.227  4.626

Total                1518  7022.743

Since β1 ≠ 0 and is 0.155, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

 

Regression Analysis: lnsqres versus lnincome

The regression equation is

lnsqres = - 5.77 - 0.070 lnincome

 

Predictor     Coef  SE Coef      T      P

Constant   -5.7687   0.7111  -8.11  0.000

lnincome   -0.0698   0.1465  -0.48  0.634

 

S = 2.15143   R-Sq = 0.0%   R-Sq(adj) = 0.0%

Analysis of Variance

Source               DF        SS     MS     F      P

Regression         1     1.050  1.050  0.23  0.634

Residual Error  1517  7021.693  4.629

Total                1518  7022.743

Since β1 ≠ 0 and is 0.070, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

Regression Analysis: lnsqres versus lnage

The regression equation is

lnsqres = - 7.23 + 0.315 lnage

 

Predictor     Coef  SE Coef      T      P

Constant   -7.2276   0.9125  -7.92  0.000

lnage         0.3155   0.2563   1.23  0.219

 

S = 2.15052   R-Sq = 0.1%   R-Sq(adj) = 0.0%

 

Analysis of Variance

Source                DF        SS     MS     F      P

Regression          1      7.007  7.007  1.52  0.219

Residual Error    1517  7015.736  4.625

Total                  1518  7022.743

Since β1 ≠ 0 and is 0.315, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

Regression Analysis: lnsqres versus lnnk

The regression equation is

lnsqres = - 5.99 - 0.281 lnnk

Predictor     Coef        SE Coef           T      P

Constant   -5.98771  0.08819  -67.89  0.000

lnnk           -0.2812   0.1631   -1.72  0.085

 

S = 2.14949   R-Sq = 0.2%   R-Sq(adj) = 0.1%

Analysis of Variance

Source            DF        SS          MS            F      P

Regression      1       13.738    13.738  2.97  0.085

Residual Error 1517  7009.004  4.620

Total               1518  7022.743

Since β1 ≠ 0 and is 0.281, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

MTB > # lntotexp is significant and estimate of beta/2 is -0.155/2 or -0.775

Posted Date: 3/4/2013 6:14:32 AM | Location : United States







Related Discussions:- Parks test, Assignment Help, Ask Question on Parks test, Get Answer, Expert's Help, Parks test Discussions

Write discussion on Parks test
Your posts are moderated
Related Questions
Incidental parameter problem is a problem which sometimes occurs when the number of parameters increases in the tandem with the number of observations. For instance, models for pa

A term which covers the large number of techniques for the analysis of the multivariate data which have in common the aim to assess whether or not the set of variables distinguish

sales per day for a product are as follows: x= 10, 11, 12, 13 (p)= 0.2, 0.4, 0.3, 0.1 obtain mean and variance of daily sale. if the profit is described by the following equation p

Zero sumgame is a game played by the number of persons in which the winner takes all stakes given by the losers so that the algebraic sum of gains at any stage is zero. Number of

difference between histogram and historigram

Biplots: It is the multivariate analogue of the scatter plots, which estimates the multivariate distribution of the sample in a few dimensions, typically two and superimpose on th

An approach to investigations designed to recognize a particular medical condition in the large population, usually by means of a blood test, which might result in the considerable

Biplots: It is the multivariate analogue of the scatter plots, which estimates the multivariate distribution of the sample in a few dimensions, typically two and superimpose on th

Kurtosis: The extent to which the peak of the unimodal probability distribution or the frequency distribution departs from its shape of the normal distribution, by either being mo

Data theory is anxious with how observations are transformed into data which can be analyzed. Data are thus viewed as the theory laden in the sense that the observations can be giv