Non - sl languages, Theory of Computation

The key thing about the Suffx Substitution Closure property is that it does not make any explicit reference to the automaton that recognizes the language.

While the argument that establishes it is based on the properties of a Myhill graph that we know must exist, those properties are properties of Myhill graphs in general and don't depend on the speci?cs of that particular graph. This lets us reason about the strings in an SL2 language without having to actually produce the automaton that recognizes it. Perhaps more importantly, it lets us establish that a particular language is not SL2 by supposing (counterfactually) that it was SL2 and showing that Suffx Substitution Closure would then imply that it included strings that it should not.

Posted Date: 3/21/2013 6:11:15 AM | Location : United States







Related Discussions:- Non - sl languages, Assignment Help, Ask Question on Non - sl languages, Get Answer, Expert's Help, Non - sl languages Discussions

Write discussion on Non - sl languages
Your posts are moderated
Related Questions
We now add an additional degree of non-determinism and allow transitions that can be taken independent of the input-ε-transitions. Here whenever the automaton is in state 1

how to understand DFA ?


Sketch an algorithm for the universal recognition problem for SL 2 . This takes an automaton and a string and returns TRUE if the string is accepted by the automaton, FALSE otherwi

S-->AAA|B A-->aA|B B-->epsilon

write short notes on decidable and solvable problem

The generalization of the interpretation of strictly local automata as generators is similar, in some respects, to the generalization of Myhill graphs. Again, the set of possible s

Since the signi?cance of the states represented by the nodes of these transition graphs is arbitrary, we will allow ourselves to use any ?nite set (such as {A,B,C,D,E, F,G,H} or ev


Proof (sketch): Suppose L 1 and L 2 are recognizable. Then there are DFAs A 1 = (Q,Σ, T 1 , q 0 , F 1 ) and A 2 = (P,Σ, T 2 , p 0 , F 2 ) such that L 1 = L(A 1 ) and L 2 = L(