Non deterministic finite state automaton, Theory of Computation

Automaton (NFA) (with ε-transitions) is a 5-tuple: (Q,Σ, δ, q0, Fi where Q, Σ, q0 and F are as in a DFA and T ⊆ Q × Q × (Σ ∪ {ε}).

We must also modify the de?nitions of the directly computes relation and the path function to allow for the possibility that ε-transitions may occur anywhere in a computation or path. The ε-transition from state 1 to state 3 in the example, for instance, allows the automaton on input ‘a' to go from state 0 not only to state 1 but also to immediately go on to state 3. Similarly, it allows the automaton, when in state 1 with input ‘b', to move ?rst to state 3 and then take the ‘b' edge to state 0 or, when in state 0 with input ‘a', to move ?rst to state 2 and then take the ‘a' edge to state 3. Thus, on a given input ‘σ', the automaton can take any sequence of ε-transitions followed by exactly one σ-transition and then any sequence of ε-transitions. To capture this in the de?nition of δ we start by de?ning the function ε-Closure which, given a state, returns the set of all states reachable from it by any sequence of ε-transitions.

Posted Date: 3/21/2013 2:45:10 AM | Location : United States

Related Discussions:- Non deterministic finite state automaton, Assignment Help, Ask Question on Non deterministic finite state automaton, Get Answer, Expert's Help, Non deterministic finite state automaton Discussions

Write discussion on Non deterministic finite state automaton
Your posts are moderated
Related Questions
The fact that the Recognition Problem is decidable gives us another algorithm for deciding Emptiness. The pumping lemma tells us that if every string x ∈ L(A) which has length grea

We have now de?ned classes of k-local languages for all k ≥ 2. Together, these classes form the Strictly Local Languages in general. De?nition (Strictly Local Languages) A langu

The Universality Problem is the dual of the emptiness problem: is L(A) = Σ∗? It can be solved by minor variations of any one of the algorithms for Emptiness or (with a little le

1. An integer is said to be a “continuous factored” if it can be expresses as a product of two or more continuous integers greater than 1. Example of continuous factored integers

(c) Can you say that B is decidable? (d) If you somehow know that A is decidable, what can you say about B?

Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes. Proof: For the "only if" direction (that every recogn

prove following function is turing computable? f(m)={m-2,if m>2, {1,if

shell script to print table in given range

c program to convert dfa to re

Let L 3 = {a i bc j | i, j ≥ 0}. Give a strictly 2-local automaton that recognizes L 3 . Use the construction of the proof to extend the automaton to one that recognizes L 3 . Gi