Nature of viral diseases, Biology

Nature of viral diseases

Viral diseases are manifested in acute, sub-acute or chronic forms, as frank clinical cases or as latent infections, some of which are fatal. These diseases occur in epidemic or endemic forms.  Viruses spread either directly by contact or indirectly through vectors and fomites such as through attendants, infected clothes, insects, feed and water troughs or by droplet infection. In Marek's disease of poultry and infectious bovine rhinotracheitis and foot-and-mouth disease in bovines, there is true 'carrier' status where the animals harbor the virus even after recovery from the disease. They act as sources for the spread of the disease under favorable conditions. Activation of a latent viral infection occurs when the resistance of the host is decreased on account of physiological stress including pregnancy and parturition, prolonged treatment with immunosuppressive drugs or due to insidious diseases such as mycotoxicosis.

The epidemiology deals with the occurrence of virus in a population with reference to its distribution and the factors which determine the observed distribution. The epidemiological methods, including descriptive, analytical and experimental, provide data which when subjected to statistical interpretations form the basis for formulation of control strategies. Serological surveys employing modern techniques, viz. enzyme- linked immunosorbent assay (ELISA), radioimmunoassay, fluorescent antibody, western blotting etc. have proved useful in diagnosing virus diseases. Nucleic acid based techniques viz. nucleic acid hybridization, polymerase chain reaction and nucleotide sequence analysis have also been used for confirmatory diagnosis and for epidemiological interpretations.

Virus infections, in general, are not influenced by chemotherapeutic agents or

antibiotics, except for the diseases caused by large-sized viruses of Herpes and Pox group. The use of specific antisera has been in vogue for the treatment of certain virus diseases, viz. rinderpest, swine fever in animals and measles, rabies and hepatitis in human beings.

Whereas a durable immunity following recovery from a bacterial disease is uncommon, one attack of a virus disease leaves behind a solid and lasting immunity, e.g. Yellow fever and small pox in human beings and rinderpest in cattle. In some diseases, however, recovery results only in a transient immunity as in common cold and influenza in human beings and foot-and-mouth disease in cattle. The resistance whether solid, partial or transient is due to the presence of antibodies circulating in the blood stream or as a result of cell-mediated immunity or both The second infection is prevented because the circulating antibodies attach themselves to the virus particles and thereby render them non-infective to susceptible host cells, if any. After vaccination against or after recovery from a virus infection, the virus is present in all the cells of a particular type for which it has predilection so that they are not any more susceptible to the entry of the same or a related virus; the recurrence of the disease is thus prevented. This is termed as the 'interference phenomenon' mediated by the production of interferon. Examples of such resistance are the immunity following vaccination against rinderpest with modified attenuated rinderpest virus, or against fowl-pox with modified attenuated fowl-pox or pigeon-pox virus.

The role of specific antibodies in affording protection to the infected host against particular virus(es) is well studied. It is now understood that the host's immune response is determined by a delicate balance of the circulating antibody mediated reactions such as virus neutralization and activation of complement system, cell mediated reactions (mainly thymus-dependent) resulting in the production of a battery of biologically active substances called lymphokines, which act on cell mitosis, cell metabolism, cell motility and cell function and other mechanisms such as phagocytosis, inflammation and blood coagulation, besides several other physiological changes, which include certain hormones, altered body temperatures, malnutrition, concurrent infections, stress, non-specific humoral inhibitors and age. Innate genetic resistance of the host is also an important factor in the natural immunity against specific virus diseases.

Posted Date: 9/18/2012 8:07:26 AM | Location : United States







Related Discussions:- Nature of viral diseases, Assignment Help, Ask Question on Nature of viral diseases, Get Answer, Expert's Help, Nature of viral diseases Discussions

Write discussion on Nature of viral diseases
Your posts are moderated
Related Questions
What is Eutrophication in ecology explain briefly? Freshwater ecosystems demonstrate the close relationship between aquatic and terrestrial ecosystems. Until recently, most peo

Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4

Q. What is inharmonious ecological interaction? The Inharmonious or negative ecological interaction is that in which at least one of the participating beings is harmed.

In general what is the phase of the menstrual cycle when copulation may lead to fecundation? Although this is not a rule, to be effective fecundation in general must happen wit


Q. What is the function of the plant cell wall? The plant cell wall has protective and structural functions. It plays an significant role in the constraint of the cell size, pr

Explain what is Fungi? The fungi are spore-bearing eukaryotic organisms without chlorophyll and having absorptive nutrition. These reproduce sexually as well asexually. Primari

Q. What is the vector of Chagas' disease? How is the disease transmitted? The vector of the Chagas' disease is its intermediate host, a triatomine bug. The key species is Triat

Q. What is the anatomical reason for the left bronchus to be more elevated than the right bronchus? Why in most cases of aspiration of foreign material by children is the object fo

Why do we need a family of proteins for cell adhesion (what is the advantage of having a family of proteins?)