Myhill-nerode theorem, Theory of Computation

This close relationship between the SL2 languages and the recognizable languages lets us use some of what we know about SL2 to discover properties of the recognizable languages. Because they are SL2 languages, the runs of an automaton A (and, equivalently, the strings of pairs licensed by G2A) will satisfy the 2-suffix substitution closure property. This means that every recognizable language L is a homomorphic image of some language L′ (over an alphabet Σ′ , say) for which

                                                             u′1σ′v′1 ∈ L′ and u′2 σ′v′2 ∈ L′⇒ u′1σ′v′2( and u′2σ′v′1) ∈ L′.

Moreover, u′1σ′v′1 ∈ L′ and u′1σ′v′2 ∈ L′⇒ u′2σ′v′2 ∈ L′

The hypothetical u′1σ′ and u′2σ′ are indistinguishable by the language. Any continuation that extends one to a string in L′ will also extend the other to a string in L′ ; any continuation that extends one to a string not in L′ will extend the other to a string not in L′.

For the SL2 language L′ the strings that are indistinguishable in this way are marked by their ?nal symbol. Things are not as clear for the recognizable language L because the homomorphism may map many symbols of Σ′ to the same symbol of Σ. So it will not generally be the case that we can easily identify the sets of strings that are indistinguishable in this way. But they will, nevertheless, exist. There will be pairs of strings u1 and u2 - namely the homomorphic images of the pairs u′1σ′ and u′2σ′-for which any continuation v, it will be the case that u1v ∈ L iff u2v ∈ L.

This equivalence between strings (in the sense of being indistinguishable by the language in this way) is the key to characterizing the recognizable languages purely in terms of the strings they contain in a way analogous to the way suffix substitution closure characterizes the SL2.

Posted Date: 3/25/2013 1:18:54 AM | Location : United States







Related Discussions:- Myhill-nerode theorem, Assignment Help, Ask Question on Myhill-nerode theorem, Get Answer, Expert's Help, Myhill-nerode theorem Discussions

Write discussion on Myhill-nerode theorem
Your posts are moderated
Related Questions
When we study computability we are studying problems in an abstract sense. For example, addition is the problem of, having been given two numbers, returning a third number that is

shell script to print table in given range

The Equivalence Problem is the question of whether two languages are equal (in the sense of being the same set of strings). An instance is a pair of ?nite speci?cations of regular

And what this money. Invovle who it involves and the fact of,how we got itself identified candidate and not withstanding time date location. That shouts me media And answers who''v

Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG too. Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the sec

One might assume that non-closure under concatenation would imply non closure under both Kleene- and positive closure, since the concatenation of a language with itself is included

When an FSA is deterministic the set of triples encoding its edges represents a relation that is functional in its ?rst and third components: for every q and σ there is exactly one

write short notes on decidable and solvable problem

Find a regular expression for the regular language L={w | w is decimal notation for an integer that is a multiple of 4}

Paths leading to regions B, C and E are paths which have not yet seen aa. Those leading to region B and E end in a, with those leading to E having seen ba and those leading to B no