Method to solve binomials of second degree, Mathematics

In this part we look at another method to obtain the factors of an expression. In the above you have seen that x2 - 4x + 4 = (x - 2)2 or (x - 2)(x - 2). If you observe it carefully we find that the middle number - 4 is the sum of -2 and -2 and the last term 4 is the product of -2 and -2. That is, if you think that so and so number might be the factors of the binomial those numbers should satisfy this condition. We take another example. You are given x2 + 15x + 56 and asked to factorize it. Now if you think that, say, 6 and 7 are the factors of this expression then their product should be equal to 56 and their sum should be equal to 15. However in this case we observe that the product is 42 and the sum is 13. Therefore, 6 and 7 cannot be the factors of this expression. Now try 7 and 8. We find that their product is 56 and the sum 15. That is, 7 and 8 are the factors of the given expression. This can be clarified by multiplying (x + 8) and (x + 7).

One point to which we have to pay attention is that we have to take even signs into consideration. For instance, consider an expression x2 - 17x + 70. What could be the factors of this expression? Let us try 7 and 10. No doubt, the product is 70 and the sum 17. Still these cannot be the factors of the given expression, because the sum is -17 and we got only 17. Now let us try -7 and -10. The sum of these two numbers gives us -17 and their product as 70. This is what we require. Therefore, the factors are x - 7 and x - 10 (observe that in this case if we took x = -7 and         x = -10, we would have got the factors as x + 7 and x + 10, whose multiplication would give us x2 + 17x + 70 and not x2 - 17x + 70. That is, the values should be considered as they are). Now let us consider an expression x2 - 3x - 70. Let us try 7 and -10 for this expression. The sum of these two values is -10 + 7  = -3 and the product being -70. That is, x + 7 and x - 10 are two factors of the given expression and not x - 7 and x + 10.

Posted Date: 9/13/2012 3:42:52 AM | Location : United States

Related Discussions:- Method to solve binomials of second degree, Assignment Help, Ask Question on Method to solve binomials of second degree, Get Answer, Expert's Help, Method to solve binomials of second degree Discussions

Write discussion on Method to solve binomials of second degree
Your posts are moderated
Related Questions
These can be expressed in terms of two fundamental operations of addition and multiplication. If a, b and c are any three real numbers, then;     1.

By using the above data compute the quartile coefficient of skewness Quartile coefficient of skewness = (Q3 + Q1 - 2Q2)/(Q3 + Q1)                                The positio

Differentiate the following functions. (a) f (t ) = 4 cos -1 (t ) -10 tan -1 (t ) (b)  y = √z sin -1 ( z ) Solution (a) Not much to carry out with this one other

The function A(t) = 5(0.7)^t was used to define the amount A in milliliters of a drug in the bloodstream t hours after the drug was ingested. Determine algebraically the time it wi

Review: Systems of Equations - The traditional initial point for a linear algebra class. We will utilize linear algebra techniques to solve a system of equations. Review: Matr

The Daily News reported that 54% of people surveyed said in which they would vote for Larry Salva for mayor. Based on the survey results, if 23,500 people vote in the election, how

Calculate the Probability A bag contains 80 balls of such 20 are red, 25 are blue and 35 are white.  A ball is picked at random what is the probability that the ball picked is

Arithmetic mean Arithmetic means is commonly known as average or mean it is acquired by first of all summing up the values provided and by dividing the total value by the tota

Solve for x: 4 log x = log (15 x 2 + 16) Solution:              x 4 - 15 x 2 - 16 = 0                (x 2 + 1)(x 2 - 16) = 0                x = ± 4   But log x is