Method to solve binomials of second degree, Mathematics

In this part we look at another method to obtain the factors of an expression. In the above you have seen that x2 - 4x + 4 = (x - 2)2 or (x - 2)(x - 2). If you observe it carefully we find that the middle number - 4 is the sum of -2 and -2 and the last term 4 is the product of -2 and -2. That is, if you think that so and so number might be the factors of the binomial those numbers should satisfy this condition. We take another example. You are given x2 + 15x + 56 and asked to factorize it. Now if you think that, say, 6 and 7 are the factors of this expression then their product should be equal to 56 and their sum should be equal to 15. However in this case we observe that the product is 42 and the sum is 13. Therefore, 6 and 7 cannot be the factors of this expression. Now try 7 and 8. We find that their product is 56 and the sum 15. That is, 7 and 8 are the factors of the given expression. This can be clarified by multiplying (x + 8) and (x + 7).

One point to which we have to pay attention is that we have to take even signs into consideration. For instance, consider an expression x2 - 17x + 70. What could be the factors of this expression? Let us try 7 and 10. No doubt, the product is 70 and the sum 17. Still these cannot be the factors of the given expression, because the sum is -17 and we got only 17. Now let us try -7 and -10. The sum of these two numbers gives us -17 and their product as 70. This is what we require. Therefore, the factors are x - 7 and x - 10 (observe that in this case if we took x = -7 and         x = -10, we would have got the factors as x + 7 and x + 10, whose multiplication would give us x2 + 17x + 70 and not x2 - 17x + 70. That is, the values should be considered as they are). Now let us consider an expression x2 - 3x - 70. Let us try 7 and -10 for this expression. The sum of these two values is -10 + 7  = -3 and the product being -70. That is, x + 7 and x - 10 are two factors of the given expression and not x - 7 and x + 10.

Posted Date: 9/13/2012 3:42:52 AM | Location : United States

Related Discussions:- Method to solve binomials of second degree, Assignment Help, Ask Question on Method to solve binomials of second degree, Get Answer, Expert's Help, Method to solve binomials of second degree Discussions

Write discussion on Method to solve binomials of second degree
Your posts are moderated
Related Questions
The value of a computer is depreciated over ?ve years for tax reasons (meaning that at the end of ?ve years, the computer is worth $0). If a business paid $2,100 for a computer, ho

Now we have to start looking at more complicated exponents. In this section we are going to be evaluating rational exponents. i.e. exponents in the form

Example of Product moment correlation The given data was acquired during a social survey conducted in a described urban area regarding the yearly income of described families

what is linear?

Tchebyshev Distance (Maximum Travel Distance per Trip Using Rectilinear Distance): It can be calculated by using following formula: d(X, Pi) = max{|x - ai|, |y - bi|} (Source

What is 19% of 26? To ?nd out 19% of 26, multiply 26 through the decimal equivalent of 19% (0.19); 26 × 0.19 = 4.94.

Differentiate following functions. (a) f ( x ) = 15x 100 - 3x 12 + 5x - 46 (b) h ( x ) = x π   - x √2  Solution (a)    f ( x ) = 15x 100 - 3x 12 + 5x - 46 I

Please,I Want to know and study for stability on predictor -corrector for numerical integration method

Example of Implicit differentiation So, now it's time to do our first problem where implicit differentiation is required, unlike the first example where we could actually avoid