Maximum slope and maximum deflection, Mechanical Engineering

Maximum slope and maximum deflection:

A simply supported beam of span l is subjected to two concentrated loads at one-third span through two supports. Discover the maximum slope & maximum deflection EI is constant.

Solution

By symmetry,

RA  = RB  = W                    ---------- . (1)

 Let a section X-X at a distance x from A,

M = W . x - W ?[x - l/3]  - W [x - 2l /3]                                -------- (2)

202_Maximum slope and maximum deflection.png

 

The equation for deflection is :

EI = d 2 y/dx2 = M = W x - W[x -(l/3) ]- W[x -(2/3)]                --------- (3)

Integrating the Equation (3),

EI (dy/ dx) = W x2/2 - (W /2)[x- (l/3)]2-  (w/2 ) [x - (2l/3) ]2 + C1         ------- (4)

EI y= W x2/6 - (W /6)[x- (l/3)]3-  (w/6 ) [x - (2l/3) ]3 + C1x +   C2         -------- (5)

 The boundary conditions :

at A,     x = 0,      y = 0  ∴  C2  = 0

It must be understood that the Equation (3), (4) & (5) pertain to the region x > 2l /3

Therefore second & third terms vanish while BC at x = 0 is used.

at B,   x = l,      y = 0

0 = W l 3/6- W /6(2l /3)3-      (W/6)(l/3)3 + C1

C1 =- W l3 /     6 [1 - 8/27 - 1/27] = W l 2/9         ----------- (6)

∴          EI (dy/dx) =    W x2/2 [x-(l/3)] 2 - (W/2) [x-(2l/3)] 2 - Wl2/9

Actually since the problem is symmetric the maximum deflection takes place in the centre.

y1C  + y2C  = y3C

θ1A  + θ2 A  = θ3 A  = θ3B

Deflection under the load, (x = l/3)  ,

EIyD  =  W/6(1/3)3 - (W l 2/9 l )×(l/3)

=          Wl3/27 (1/6 - 1) =  - 5 W l 3 / (27 × 6)

yD  = - 5 W l 3 / 162 EI                             --------- (7)

At A, (x = 0),

θA = - W l 2 / 9 EI                              ---------- (8)

At B (x = l),

            EI θB  = W l 2 /2- (W/2) (4l 2/9) -( W/2)( l 2/9) -         (W l 2/9)

                       = W l 2/18 [9 - 4 - 1 - 2] = +Wl2/9

  ∴        θ  = + W l 2/9 EI            ---------- (9)

For maximum deflection, slope is zero.

0 =       W x2 /2 -(w/2) [ x-(l/3)]2 - Wl2/9

Again note down that maximum deflection shall occur between the loads which is easily ascertained from symmetry. Though, to prove this Equation (5) is utilized and since x < 2l/3 among the loads, the third term vanishes.

⇒         0 = 9 x2  - 9 (x - l/3)2  - 2l 2

           = 9 x2  - 9 ( x2  + l 2 /9 - 2l x /3) - 2l 2

=- l 2  + 6 l x - 2l 2

6lx = 3l 2

x = l / 2                    -------- (10)

 EIy max  = (W/6)  x3  - W (x - (l /3))3 - (Wl2/9 )x

Now put x = l /2

EIy max  =  (W /6 )(l/2)3 -(w/6)((l/2)-(l/3))3 -Wl3/18

      = (w/6)((l/2)-(2l/3))3-(wl2/9)(l/2)= (wl3/6)(1/216)+(1/3)-(1/8))

= - Wl 3/6  [(1/ 8 )-(1/ 36) -(1/3) ]= - wl3/6 ((72+1-27)/216)

=          (Wl 3 /(36 × 8 × 6)) [36 - 8 - 96] = - Wl 3 (23/648)

∴ y max  = 23 Wl 3/ 648                    ------ (11)

Posted Date: 1/21/2013 5:26:35 AM | Location : United States







Related Discussions:- Maximum slope and maximum deflection, Assignment Help, Ask Question on Maximum slope and maximum deflection, Get Answer, Expert's Help, Maximum slope and maximum deflection Discussions

Write discussion on Maximum slope and maximum deflection
Your posts are moderated
Related Questions

A number of heavy items are to be off-loaded from a Heavy-Lift Ship and placed on a series of "support assemblies" on the quayside to await transportation by road to their destinat


Determine the forces in strings: The Electric light fixture weighing 15N hangs from point C , by two strings AC and BC . AC is inclined at 60° to the horizontal and BC

Grinding Wheels Implicated to be rotated at relatively high rotational velocities within grinding machines, grinding wheels contain a surface of rotation about a central axis.

Gas welding is a method of joining two metal pieces (similar or dissimilar) together by melting and fusing their edges at the joint. It involves applying intense concentrated flam

Drum Brake: The construction of drum brake is clearly shown in Figure 2.40. In a rotating brake drum stationary brake shoes are attached concentric to the axle hub. A back plate

Find out power transmitted by belt: A belt is running over pulley of 1.5m diameters at 250RPM. The angle of contact is 120º and coefficient of friction is 0.30. If maximum te

Q.   For an electromagnetic system, show that the energy stored in a magnetic field is equal to the area enclosed b/w magnetization curves for open and closed position of the armat

what is feathering system in turbo prop type aircraft