Mathematical approach to revenue and cost functions, Managerial Economics

A MATHEMATICAL APPROACH TO REVENUE AND COST FUNCTIONS

Recall that TR = P x Q

This implies that P(AR) = TR

                                    Q

For example, assuming that the AR function is given by:

AR = 20 - 1 Q

              3

TR = P x Q

     = 20Q - 1 Q2

                  3

Marginal revenue is  measure of the instantaneous rate of change of total revenue with respect to output Q.  (Refer to the basic rules of differentiation in Appendix 1 of Modern Economics by Mudida)

                                                MR = d TR

                                                         d Q

Thus, for example, given the following TR function:

                                                TR = 2Q - 1 Q 2

                                                               2        

                                                    AR = 2 - 1 Q

                                                                  2

                                                MR = d TR

                                                        d Q                               

                                                       = 2 - Q

The cost concepts studied earlier can also be expressed in functional form.  Cubic functions are commonly used to represent cost functions.  For example, a cost  function may take  the form:

TC = a + b Q + c Q 2 + d Q 3

Average cost refers to the cost per unit of output.

                  AC = TC

                           Q

                                          =  a + b + cQ + dQ 2

                                               Q

Marginal cost refers  to the instantaneous rate of change of the total cost function with respect to  output.

                                    MC = d TC     

                                             d Q 

Given  TC = a + bQ  + CQ2 + dQ 3

               MC = d TC

                         dQ

                   = b + 2 cQ + 3dQ 2

For example, given a total cost function

TC = Q3 - 8Q2 + 68Q + 4

MC = d TC = 3Q2 - 16Q + 68

         d Q

Posted Date: 11/28/2012 5:45:26 AM | Location : United States





Given that TC=1000+10Q-0.9Q^2+0.04Q^3 ,, find the rate of output Q that results in minimum Average variable cost
Posted by hillary | Posted Date: 7/3/2013 5:33:59 AM


Related Discussions:- Mathematical approach to revenue and cost functions, Assignment Help, Ask Question on Mathematical approach to revenue and cost functions, Get Answer, Expert's Help, Mathematical approach to revenue and cost functions Discussions

Write discussion on Mathematical approach to revenue and cost functions
Your posts are moderated
Related Questions
Question: i) If X and Y are different processes producing the same commodity and the joint total cost (TC) is given by: TC = X 2 + 2Y 2 - 3XY Using Lagrange Multiplier,

discuss the significance of managerial economics in regards to business strategies employed by business entities currently operating in the global economy

how manager can apply scarcity and oppotunity cost in managerial decision making

In regards to air pollution, use a diagram to show and explain how the existence of pollution can make the market equilibrium inefficient.

Explain the Decision-making theory Decision-making theory and game theory that recognise the conditions of imperfect knowledge and uncertainty under which business managers ope

who are the contributors in economics and what they contribute in economics


PER CAPITA INCOME AND INTERNATIONAL COMPARISONS Per capita income figures can also be used to compare the standards of living of different countries. Thus if the per capita in

Burden of the national debt The extent of the burden on a nation of public debt, depends in the first place on whether it is an external or an internal debt.  The burden of th

Question: Discuss the pricing practices adopted by firms under different market structures. OR A firm produces a good, which is sold on delivery and in restaurants. The d