Markov Chain, Applied Statistics

Each weekend, Derek either reads a book (B), goes to the cinema (C), visits
his local museum (M), or plays squash (S). If he reads a book one weekend,
then he will take part in one of the other activities the next weekend, each
with the same probability. After going to the museum or to the cinema, he
always either plays squash or reads a book the next weekend, and he is twice
as likely to play squash as he is to read a book. The weekend after playing
squash, he always goes to the cinema.
(i) Write down the matrix of transition probabilities for the Markov chain
for Derek’s weekend activities.
(ii) One weekend, Derek reads a book.
(1) What is the probability that he goes to the cinema the next
weekend?
(2) Calculate the probability that he plays squash in two weeks’ time.
(3) Calculate the probability that he goes to the cinema next weekend
and plays squash in two weeks’ time.
(iii) In the long run, what proportion of weekends does Derek spend on each
of the activities? Show all the steps in your solution, and give your
answers either as fractions or correct to three decimal places.
(iv) If Derek visits the museum one weekend, what is the expected number
of weeks until he next visits the museum?
Immediately on returning from a holiday, Derek always either visits the
museum or plays squash, each with the same probability.
(v) Calculate the probability that he will play squash:
(1) one weekend later;
(2) two weekends later;
(3) three weekends later.
(vi) Find an approximate value for the probability that he will play squash
Posted Date: 6/25/2012 6:40:18 AM | Location : United States







Related Discussions:- Markov Chain, Assignment Help, Ask Question on Markov Chain, Get Answer, Expert's Help, Markov Chain Discussions

Write discussion on Markov Chain
Your posts are moderated
Related Questions
Mode The mode is the value which occurs most frequently in a set of observations on the point of maximum frequency and around which other items of the set cluste

Grouped data  For grouped data, the formula applied is  σ = Where f = frequency of the variable, μ= population mea

Scenario: To fundraise for middle school camp the year 3 and 4 syndicate designed and produced chocolate treats to sell to the year 1 and 2, and year 5 and 6 students at morning te

mark number of student 0-10 4 10-20 8 20-30 11 30-40 15 40-50 12 50-60 6 calculate frequency distribution

In PCA the eigknvalues must ultimately account for all of the variance. There is no probability,'no hypothesis, no test because strictly speaking PCA is not a statistical procedure

Cause and Effect Even a highly significant correlation does not necessarily mean that a cause and effect relationship exists between the two variables. Thus, correlation does

how do you find if two way or one way

A researcher was interested lowering the high school dropout level in his county. He measured the reading level of students entering middle school (based on a standard test) and th

what is the aim of statistics?

Based on the following graphs (next page) you should write a discussion report (2 pages) on: 1. Determination of whether the open-loop system response is consistent with a 1st o