Markov Chain, Applied Statistics

Each weekend, Derek either reads a book (B), goes to the cinema (C), visits
his local museum (M), or plays squash (S). If he reads a book one weekend,
then he will take part in one of the other activities the next weekend, each
with the same probability. After going to the museum or to the cinema, he
always either plays squash or reads a book the next weekend, and he is twice
as likely to play squash as he is to read a book. The weekend after playing
squash, he always goes to the cinema.
(i) Write down the matrix of transition probabilities for the Markov chain
for Derek’s weekend activities.
(ii) One weekend, Derek reads a book.
(1) What is the probability that he goes to the cinema the next
weekend?
(2) Calculate the probability that he plays squash in two weeks’ time.
(3) Calculate the probability that he goes to the cinema next weekend
and plays squash in two weeks’ time.
(iii) In the long run, what proportion of weekends does Derek spend on each
of the activities? Show all the steps in your solution, and give your
answers either as fractions or correct to three decimal places.
(iv) If Derek visits the museum one weekend, what is the expected number
of weeks until he next visits the museum?
Immediately on returning from a holiday, Derek always either visits the
museum or plays squash, each with the same probability.
(v) Calculate the probability that he will play squash:
(1) one weekend later;
(2) two weekends later;
(3) three weekends later.
(vi) Find an approximate value for the probability that he will play squash
Posted Date: 6/25/2012 6:40:18 AM | Location : United States







Related Discussions:- Markov Chain, Assignment Help, Ask Question on Markov Chain, Get Answer, Expert's Help, Markov Chain Discussions

Write discussion on Markov Chain
Your posts are moderated
Related Questions
1 Se toma una muestra de 81 observaciones con una desviación estándar de 5. La media de la muestra es de 40. Determine el intervalo de de confianza de 99% para la media

A rightist incumbent (player I) and a leftist challenger (player C) run for senate. Each candidate chooses among two possible political platforms: Left or Right. The rules of the g

How can we analyse data with four bilateral response variables measured with errors and three covariated measured without errors?

Theories of Business forecasting

The amounts of money won by the top ten finishers in a famous car race are listed below. $1,172,246    $163,659    $440,584    $350,634     $290,596 $186,731    $145,809     $143,2

Suppose that before the minimum wage law change, the underlying mean number of part-time employees per Burger King Restaurant in New Jersey was 20.3. It was thought that the increa

For the data analysis project, you will address some questions that interest you with the statistical methodology we are learning in class.   You choose the questions; you decide h

Systematic Sampling In Systematic Sampling each element has an equal chance of being selected, but each sample does not have the same chance of being selected. Here,

Harmonic Mean  The harmonic mean  also called harmonic  average, in the total numbers of items of variable divided by the sum of r reciprocals of the values of the variable. In

Q. The following system of equations illustrates the algebraic form of a partial (individual) market equilibrium model, which is a model of price (P) and quantity (Q) determination