Magnetic permeability and the b/h curve, Electrical Engineering

Magnetic permeability and the B/H curve

To measure the relationship between field strength H and flux density B for a material, a sample is made into a closed ring and a magnetising coil wound onto it. Current flowing in this coil creates a m.m.f. equal to NI which in turn produces a magnetic field

H= NI/L

in the ring. So  H is proportional to the current in the energising coil and may be obtained from direct measurement of I. If a change in the current occurs, the flux density changes and this will induce a transient 'back e.m.f' in a second coil that is also wound onto the ring.

 

1372_Magnetic permeability and the B-H curve.png

 

The integral of the back emf is proportional to B. Hence the relationship between B and H may be determined from measurement of I (to give H) and the induced back e.m.f in the coils (to give B).

The result of such measurements on various materials produces two types of curves - straight lines of low

B/H =µr

values and curves for  which the value of B/H =µr   varies. This first type are sub divided into paramagnetic
varies. This first type are sub divided into paramagnetic materials if B/H =µr >1 and diamagnetic if B/H =µr <1. The second type are ferromagnetic and have a more complicated dependence of B on H.  At low H these have B/H =µ>>1 (typically 100 - 100000)

85_Magnetic permeability and  B-H curve.png

 

 

It is also found that ferromagnetic materials lose these high µr properties above a well-defined temperature (different for different materials) known as the Curie temperature. This typically  r ranges from 200 - 750 °C and limits the maximum temperature that many electromagnetic devices can operate.


The temperature dependence of the ferromagnetic properties give a clue to the physical reason for the different

permeabilities of the materials. Diamagnetic and paramagnetic properties are attributable to the orbiting electrons within the atoms of the material. Ferromagnetic properties arise due to the orientation of atoms on a macroscopic scale so that the magnetic fields created by the orbiting electrons within each atom reinforce each other. These 'domains' of high magnetic strength may contain ~10-12   atoms each. The domains are initially randomly directed but under the influence of an external magnetic field, re-orientate to point in the same direction. Initially this is along the direction of the nearest crystal axis to the direction of the magnetic field.

 

Steadily increasing the external field brings them directly into line with the external field direction.If the external field is now removed, the domains relax back to point in the nearest crystal direction, leaving a residual magnetism. Materials that have a strong residual magnetism are used for permanent magnets. Cycling the current over one complete cycle produces a hysteresis B/H curve

 

 

 

1726_hysteresis B-H curve.png

Posted Date: 8/22/2012 5:56:39 AM | Location : United States







Related Discussions:- Magnetic permeability and the b/h curve, Assignment Help, Ask Question on Magnetic permeability and the b/h curve, Get Answer, Expert's Help, Magnetic permeability and the b/h curve Discussions

Write discussion on Magnetic permeability and the b/h curve
Your posts are moderated
Related Questions
Explain the term full duplex transmission. Data can travel in both directions concurrently. There is no require to switch from transmit to receive mode as in half duplex. It's

The Quality factor is also explained, as Q. So it is a number, which shows the lossness of a circuit. Higher the Q, the lower are the losses. The quality factor is calculated o

Describe flat plate collectors. Explain liquid flat plate collector with relevant diagram. Describe different types of absorbing surface areas with diagram. Also discuss their r

What is the difference between a zinc-blend and Si diamond lattice structure?


Q. Use necessary circuit and waveforms to explain the working of a Bootstrap sweep generator The bootstrap circuit illustrated in figure given below is a commonly used method f

Refer to the op amp circuit shown below. Let R 1 = 140 k_, R 2 = 10 k_, R 3 = 10 k_, R 4 = 20 k_, RL = 10 k_. Assume the op amp is ideal. Find the equation relating the

For the circuit of Figure, obtain the complete solution for the current i L (t) through the 5-H inductor and the voltage v x (t) across the 6- resistor.

Determine the change in IC from 25ºC to 175ºC for the transistor defined in this table for fixed-bias with RB = 240 k and = 100 due to the S(VBE) stability factor.

KPI for Second Stage Implementation These KPIs deal along with the quality of the relationship among a supplier and a user (customer). They are significant to potential custom