Magnetic permeability and the b/h curve, Electrical Engineering

Magnetic permeability and the B/H curve

To measure the relationship between field strength H and flux density B for a material, a sample is made into a closed ring and a magnetising coil wound onto it. Current flowing in this coil creates a m.m.f. equal to NI which in turn produces a magnetic field

H= NI/L

in the ring. So  H is proportional to the current in the energising coil and may be obtained from direct measurement of I. If a change in the current occurs, the flux density changes and this will induce a transient 'back e.m.f' in a second coil that is also wound onto the ring.

 

1372_Magnetic permeability and the B-H curve.png

 

The integral of the back emf is proportional to B. Hence the relationship between B and H may be determined from measurement of I (to give H) and the induced back e.m.f in the coils (to give B).

The result of such measurements on various materials produces two types of curves - straight lines of low

B/H =µr

values and curves for  which the value of B/H =µr   varies. This first type are sub divided into paramagnetic
varies. This first type are sub divided into paramagnetic materials if B/H =µr >1 and diamagnetic if B/H =µr <1. The second type are ferromagnetic and have a more complicated dependence of B on H.  At low H these have B/H =µ>>1 (typically 100 - 100000)

85_Magnetic permeability and  B-H curve.png

 

 

It is also found that ferromagnetic materials lose these high µr properties above a well-defined temperature (different for different materials) known as the Curie temperature. This typically  r ranges from 200 - 750 °C and limits the maximum temperature that many electromagnetic devices can operate.


The temperature dependence of the ferromagnetic properties give a clue to the physical reason for the different

permeabilities of the materials. Diamagnetic and paramagnetic properties are attributable to the orbiting electrons within the atoms of the material. Ferromagnetic properties arise due to the orientation of atoms on a macroscopic scale so that the magnetic fields created by the orbiting electrons within each atom reinforce each other. These 'domains' of high magnetic strength may contain ~10-12   atoms each. The domains are initially randomly directed but under the influence of an external magnetic field, re-orientate to point in the same direction. Initially this is along the direction of the nearest crystal axis to the direction of the magnetic field.

 

Steadily increasing the external field brings them directly into line with the external field direction.If the external field is now removed, the domains relax back to point in the nearest crystal direction, leaving a residual magnetism. Materials that have a strong residual magnetism are used for permanent magnets. Cycling the current over one complete cycle produces a hysteresis B/H curve

 

 

 

1726_hysteresis B-H curve.png

Posted Date: 8/22/2012 5:56:39 AM | Location : United States







Related Discussions:- Magnetic permeability and the b/h curve, Assignment Help, Ask Question on Magnetic permeability and the b/h curve, Get Answer, Expert's Help, Magnetic permeability and the b/h curve Discussions

Write discussion on Magnetic permeability and the b/h curve
Your posts are moderated
Related Questions
Q. Can you explain about Multiple Poles? Let us consider that F 1 (s) has all simple poles except, say, at s = p 1 which has a multiplicity m. Then one can write When

Q. Describe the time division switching? Ans: Space and Time Switching: Space Switches: Connections can be made between outgoing and incoming PCM highways by means of

Gate terminal - field-effect transistor: The names of the terminals consider to their functions. The gate terminal might be thought of since controlling the opening and closin

Explain BIOS The IBM PC has in its ROM a collection of routines, each of which performs some particular function such as reading a character from keyboard, writing character to

Covert Analog Signal into Digital Signal A strain gauge is used in Wheatstone Bridge configuration. The output from the Wheatstone Bridge varies from zero to a maximum strain

Q. What do you mean by Exponent? The exponent field needs to represent both negative and positive exponents. To perform this, a bias is added to the actual exponent in order

What is faithful amplification. What are basic condition for faithful amplification. Describe : (a) Peak Inverse voltage. (b) Maximum forward current. (c) Knee voltage

define all the symbols with their units of DC generater

Energy Conservation Building Codes It encompass the norms and standards of energy consumption expressed in terms of per square meter of the area wherein energy is used. The

Q. Dynamic Response of Control Systems? The existence of transients (and associated oscillations) is a characteristic of systems that possess energy-storage elements and that a