Magnetic permeability and the b/h curve, Electrical Engineering

Magnetic permeability and the B/H curve

To measure the relationship between field strength H and flux density B for a material, a sample is made into a closed ring and a magnetising coil wound onto it. Current flowing in this coil creates a m.m.f. equal to NI which in turn produces a magnetic field

H= NI/L

in the ring. So  H is proportional to the current in the energising coil and may be obtained from direct measurement of I. If a change in the current occurs, the flux density changes and this will induce a transient 'back e.m.f' in a second coil that is also wound onto the ring.

 

1372_Magnetic permeability and the B-H curve.png

 

The integral of the back emf is proportional to B. Hence the relationship between B and H may be determined from measurement of I (to give H) and the induced back e.m.f in the coils (to give B).

The result of such measurements on various materials produces two types of curves - straight lines of low

B/H =µr

values and curves for  which the value of B/H =µr   varies. This first type are sub divided into paramagnetic
varies. This first type are sub divided into paramagnetic materials if B/H =µr >1 and diamagnetic if B/H =µr <1. The second type are ferromagnetic and have a more complicated dependence of B on H.  At low H these have B/H =µ>>1 (typically 100 - 100000)

85_Magnetic permeability and  B-H curve.png

 

 

It is also found that ferromagnetic materials lose these high µr properties above a well-defined temperature (different for different materials) known as the Curie temperature. This typically  r ranges from 200 - 750 °C and limits the maximum temperature that many electromagnetic devices can operate.


The temperature dependence of the ferromagnetic properties give a clue to the physical reason for the different

permeabilities of the materials. Diamagnetic and paramagnetic properties are attributable to the orbiting electrons within the atoms of the material. Ferromagnetic properties arise due to the orientation of atoms on a macroscopic scale so that the magnetic fields created by the orbiting electrons within each atom reinforce each other. These 'domains' of high magnetic strength may contain ~10-12   atoms each. The domains are initially randomly directed but under the influence of an external magnetic field, re-orientate to point in the same direction. Initially this is along the direction of the nearest crystal axis to the direction of the magnetic field.

 

Steadily increasing the external field brings them directly into line with the external field direction.If the external field is now removed, the domains relax back to point in the nearest crystal direction, leaving a residual magnetism. Materials that have a strong residual magnetism are used for permanent magnets. Cycling the current over one complete cycle produces a hysteresis B/H curve

 

 

 

1726_hysteresis B-H curve.png

Posted Date: 8/22/2012 5:56:39 AM | Location : United States







Related Discussions:- Magnetic permeability and the b/h curve, Assignment Help, Ask Question on Magnetic permeability and the b/h curve, Get Answer, Expert's Help, Magnetic permeability and the b/h curve Discussions

Write discussion on Magnetic permeability and the b/h curve
Your posts are moderated
Related Questions
# complete working of thermal transducers

Over 6,000 companies have established operations within Jebel Ali Free Zone, using it as a base to distribute their products to the GCC countries and beyond. These companies hav

Write out the General Form of Difference Equation? If the x[n] is the input and y[n] is the output of a linear time-invariant  system,  then  an  N  order  FIR  difference  equ

Hysteresis results in a dissipation of energy Hysteresis results in a dissipation of energy which appears as a heating of the magnetic material. The energy loss associated wit

Permeability and B-H curve for different magnetic materials Permeability is the ability of a magnetic circuit to create magnetic flux lines in a material or substance that prod

2's Complement Multiplication Two's complement multiplication follows the similar rules as binary multiplication. For illustration, (-4) × 4 = (-16)              1111

Saturation or active mode While V GS   > V th  and  V DS   > (V GS   - V th ) The switch is turned on, and a channel has been made that allows current to flow

Solenoids find application in a variety of electrically controlled valves. The magnetic structure shown in Figure is a simplified representation of a solenoid in which the flux in

Flow Chart and Cause-Effect Diagram Flow Charts Flow charts are pictorial representations of a procedure. By breaking the procedure down within its constituent steps, f

Mainframes Computers larger than minicomputer more power  operating at very high speed  called  mainframes.  They  can processes 64  bit data.  Such computers are used  in defe