Low and high pass filters - calculate the cutoff frequencies, Electrical Engineering

At the completion of this unit, you will be able to determine the cutoff frequencies and attenuations of RC and RL low- and high-pass filters by using test circuits.

UNIT FUNDAMENTALS

A filter is a frequency-selective circuit that permits signals of certain frequencies to pass while it rejects signals at other frequencies.

1231_Low and High Pass Filters 1.png

A low-pass filter, as its name implies, passes low frequencies but rejects high frequencies.

1982_Low and High Pass Filters 2.png

The dividing line between the passing of low frequencies and the rejecting of high frequencies is the cutoff frequency (fc), or -3 dB point. In a low-pass filter, signals lower than the cutoff frequency pass essentially unmodified. Frequencies higher than the cutoff frequency are greatly attenuated, or reduced.

1595_Low and High Pass Filters 3.png

In a high-pass filter, signals higher than the cutoff frequency pass essentially unmodified. Signals lower than the cutoff frequency is greatly attenuated, or reduced.

The cutoff frequency (fc) is the point where the output voltage (Vo) drops to 70.7% of, or 3 dB down from, the input voltage.

1668_Low and High Pass Filters 4.png

Frequency response data may be expressed in terms of output voltage but is usually expressed in decibels (dB). Decibels are units that express or measure the gain or loss (attenuation) in a circuit. The decibel can be based on the ratio of the output voltage (Vo) to the input voltage (Vi).

2117_Low and High Pass Filters 5.png

NOTE: In the type of filters studied in this volume, the output voltage (Vo) is always less than the input voltage (Vi).

1191_Low and High Pass Filters 6.png

The rate of attenuation, or loss, beyond the cutoff frequency (fc) is highly predictable. This attenuation is 6 dB per octave or 20 dB per decade. An attenuation rate of 6 dB per octave is the same rate as 20 dB per decade.

NEW TERMS AND WORDS

band - a range of frequencies.

dB per octave - decibels per octave (dB/octave); a 1 dB increase or decrease over a two-to-one frequency range.

dB per decade - decibels per decade (dB/decade); a 1 dB increase or decrease over a ten-to-one frequency range.

octave - a two-to-one or one-to-two ratio; a frequency factor of two. One octave is the doubling or halving of a frequency.

decade - a ten-to-one or one-to-ten ratio; a frequency factor of ten.

rolled off - gradually attenuated, or decreased. A filter attenuates when its rejected frequencies are rolled off.

EQUIPMENT REQUIRED

F.A.C.E.T. base unit

AC 2 FUNDAMENTALS circuit board

Oscilloscope, dual trace

Generator, sine wave

Exercise 1 - Low-Pass Filters  

EXERCISE OBJECTIVE

When you have completed this exercise, you will be able to calculate the cutoff frequencies and attenuations of RC and RL low-pass filters. You will verify your results with an oscilloscope.

DISCUSSION

  • Several ways exist for the implementation of low-pass filters, each of which consist of a voltage-divider network containing a resistor and a frequency-varying component (inductor or capacitor).
  • Output voltage from the filters is "tapped off" the voltage divider.
  • Changes in the frequency of the supply voltage cause changes in the circuit reactance, resulting in output voltage variations.
  • In RC filters, the capacitive reactance is high at low frequencies compared to the resistance, causing most of the input voltage to appear across the output capacitor.
  • Capacitive reactance decreases as the generator frequency increases, causing larger voltage drops across the R and decreasing the voltage across the output capacitor.
  • Low-pass filters are designed so that frequencies below the cut-off frequency are passed while higher frequencies are attenuated.
  • In low-pass RL filters, the inductive reactance is small at low frequencies compared to the resistance, and most of the input voltage falls across the output resistor.
  • Inductive reactance increases as the generator frequency increases; therefore, more and more voltage is dropped across the inductor and less across the output resistor.
  • Cutoff frequency is defined as the frequency where the output signal is 3 dB down, or 0.707 x Vo.
  • For RC circuits: fc = 1/2πRC
  • For RL circuits: fc = R/2πL

 

 

 

 

 

 

Posted Date: 3/5/2013 4:44:57 AM | Location : United States







Related Discussions:- Low and high pass filters - calculate the cutoff frequencies, Assignment Help, Ask Question on Low and high pass filters - calculate the cutoff frequencies, Get Answer, Expert's Help, Low and high pass filters - calculate the cutoff frequencies Discussions

Write discussion on Low and high pass filters - calculate the cutoff frequencies
Your posts are moderated
Related Questions
Illustrate how to replace the HT Fuse on a 6-pole and 4-pole structure? Ans: a) Open switch on 6-pole or 4-pole. b) Connect the discharge rod between earth and conduc

SUB Instruction Op code  format is of SUB  instruction is Replace  the three bit code  of the register R from   to obtain the op code of the  required SUB  instruction . o


Q. The circuit shown in Figure is the equivalent circuit of a field-effect transistor (FET) amplifier stage. (a) Determine the y-parameters. (b) For values of µ = g m /g d >

Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4

DC Motor Starting When voltage is applied to the armature of a dcmotorwith the rotor stationary, no emf is generated and the armature current is limited only by the internal ar

Q. How do you differentiate between dual beam and dual trace oscilloscope? Sol. There are two separate vertical input channels A, B and these use separate attenuator and prea

Explain Hand shakingfor the allocation of addresses to memories and input output devices. Hand shaking: During an ASYNCHRONOUS data transfer is not based upon predetermined tim

how to break a signal into time components

industrial approach of speed control of dc series motor