Long-run labor demand and factor substitutability, Managerial Economics

Problem: Long-Run Labor Demand and Factor Substitutability

Suppose there are two inputs in the production function, labor (L) and capital (K), which can be combined to produce Y units of output according to the following production function:

Y = 30K + 10L

The rm wants to produce 600 units of output.

1. Draw the isoquant that corresponds to that level of production (600 units) in a graph that has L on the horizontal axis and K on the vertical axis.

2. The shape of the isoquant tells us about the relationship between the two inputs in production. How substitutable are L and K in the production of Y ? In particular, how many units of L can be replaced by one unit of K without a ecting the level of output?

3. Is this isoquant convex (bowed toward the origin)?

4. In class, we said that isoquants are convex under our \standard assumptions." To see which standard assumption is violated in this case, hold K xed at some level (for convenience, suppose K is xed at zero). Graph Y as a function of L for L = 0; :::; 5

5. By looking at your graph, determine the marginal product of labor (MPL). That is, what is the change in Y (ΔY ) when L increases by 1 unit (ΔL = 1)?

6. How does the marginal product of labor (MPL) change as L increases? How is this di erent from the \standard assumption" about the MPL we made in class?

7. Suppose the rm can choose whatever combination of capital (K) and labor (L) it wants to produce 600 units. Suppose the price of capital is $1,000 per machine per week. What combination of inputs (K and L) will the rm use if the weekly salary of each worker is $400?

8. What if everything is same as in the previous question but the weekly salary of each worker is $300? Now what combination of inputs (K and L) will the rm use to produce its 600 units?

9. (Bonus) What is the (wage) elasticity of labor demand for this rm as the wage falls from $400 to $300?

Problem: Own-price elasticity

Suppose the market labor demand curve is given by LD = 20 (1=2)W and the market labor supply curve is given by LS = 2W.

1. Graph the labor demand curve and the labor supply curve on the same graph (with L on the horizontal axis and W on the vertical axis, as we have done in class).

2. Determine the equilibrium employment (L* ) and wage (W*) in this market.

3. Now suppose the government implements a minimum wage (WM) of $10 in this market. What will the new level of employment be?

4. Calculate the elasticity of the labor demand curve when the wage changes from its equilibrium level (W ) to the minimum level (WM) set by the government. Is the demand curve elastic or inelastic in this range?

5. Suppose that the wage in some other labor market goes up so that labor supply in this market is now given by LS = 2W   10. Graph the new supply curve on your graph from Part #1.

6. Now that supply has shifted, what will employment and the wage paid to workers be in this market? What is the e ect of the minimum wage given in Part #3 on employment now?

7. The government implements a new minimum wage of $14 in this market. What will the new level of employment be? Calculate the elasticity of the labor demand curve when the wage changes from what it is in Part #6 to the new minimum wage of $14. Is the demand curve more or less elastic in this range than it is in Part #4?

Problem: Cross-price elasticity

Consider teenage labor and adult labor as separate inputs in production for fast-food restau-rants. Suppose the wage of teenage workers increases (but the adult wage remains the same). Analyze the e ect of the teenage wage increase on fast-food restaurants' employment of adult labor, given that:

1. Teenage labor costs are a large share of total costs at fast-food restaurants.

2. Adults dislike the tasks teenagers do at fast-food restaurants (i.e. cleaning bathrooms), so it takes big increases in their wages to get them to do this kind of work.

Given these 2 facts, are teenage workers and adult workers more likely to be gross substitutes or gross complements in fast-food production, holding all other factors constant?

Posted Date: 2/11/2013 2:32:20 AM | Location : United States







Related Discussions:- Long-run labor demand and factor substitutability, Assignment Help, Ask Question on Long-run labor demand and factor substitutability, Get Answer, Expert's Help, Long-run labor demand and factor substitutability Discussions

Write discussion on Long-run labor demand and factor substitutability
Your posts are moderated
Related Questions
The nature and function of money The development of money was necessitated by specialization and exchange.  Money was needed to overcome the shortcomings and frustrations of t

Demand Function for Money In the Keynesian analysis , the demand for money is a function of the level of income and the rate of interest. According to Milton Friedman, the dema

Question: (a) The regression results for the quantity demanded of good X is given by ln Q X = 1220 - 9.5 ln P X - 2.21 ln P Y + 1.01 ln M t values (5.3)  (-5.1

break event point

Ann owns a lawn-mowing company. She has 400 lawns she requires to cut every week. Her weekly revenue from these 400 lawns is $20,000. Given an 18-inch-deck push mower, a laborer ca

Meaning The word inflation has at least four meanings. A persistent rise in the general level of prices, or alternatively a persistent falls in the value of money.

Antitrust authorities at the Federal Trade Commission are reviewing your company's recent merger with a rival firm. The FTC is concerned that the merger of two rival firms in the s

1. Suppose in a perfectly competitive industry the market demand and supply forces combine to produce a short-run equilibrium price of Rs 70. Suppose that a firm in this industry h

Balance of Payments Perhaps the most immediate reason for bringing in protection is a balance of payment deficit.  If a country had a persistent deficit in its balance of paym

Marginal Cost This is the increase in total cost resulting from the production of an extra unit of output.  Thus, if TC n   is the total cost of producing n