Level of significance, Applied Statistics

Level of Significance: α

The main purpose of hypothesis testing is not to question the computed value of the sample statistic, but to make judgment about the difference between the sample statistic and a hypothesized population parameter. The next step after stating the Null and Alternative Hypotheses, is to decide what criterion to be used for deciding whether to accept or reject the null hypothesis.

When we choose 5% level of significance in a test procedure, there are about 5 cases in 100 that we would reject the hypothesis when it should be accepted, that is, we are about 95% confident that we have made the right decision. Similarly, if we choose 1% level of significance in testing a hypothesis, then there is only 1 case in 100 that we would reject the hypothesis when it should be accepted.

Suppose, that under a given hypothesis the sampling distribution of a statistic θ is approximately a normal distribution with mean

E (θ) and standard deviation (Standard Error) σθ

Figure 

1879_level of significance.png

 

Then z = 2357_level of significance1.png

is called the standardized normal variable or z-score, and its distribution is the standardized normal distribution with mean 0 and standard deviation 1, the graph of which is shown above.

From the above figure, we see that if the test statistic z of a sample statistic  θ lies between -1.96 and 1.96, then we are 95% confident that the hypothesis is true [since the area under the normal curve between z = -1.96 and z  = 1.96 is 0.95 which is 95% of the total area].

But if for a simple random sample we find that the test statistic (or z-score) z lies outside the range -1.96 to 1.96, i.e. if z  > 1.96, we would say that such an event could happen with probability of only 0.05 (total shaded area in the above figure if the given hypothesis were true). In this case, we say that z-score differed significantly from the value expected under the hypothesis and hence, the hypothesis is to be rejected at 5% (or 0.05) level of significance. Here the total shaded area 0.05 in the above figure represents the probability of being wrong in rejecting the hypothesis. Thus if z  > 1.96, we say that the hypothesis is rejected at a 5% level of significance.

The set of z scores outside the range -1.96 and 1.96, constitutes the critical region or region of rejection of the hypothesis or the region of significance. Thus critical region is the area under the sampling distribution in which the test statistic value has to fall for the null hypothesis to be rejected. On the other hand, the set of z scores inside the range -1.96 to 1.96 is called theregion of acceptance of the hypothesis. The values -1.96 and 1.96 are called critical values at 5% level of significance.

From the above discussion we can formulate the following rule of decision:

Decision Rule (Two-Sided Tests)

Significant level

z Value

Decision

5%

5%

1%

1%

| z |  > 1.96

| z |  < 1.96

| z |  > 2.58

| z |  < 2.58

Reject

Accept

Reject

Accept                                              

 

Posted Date: 9/15/2012 3:48:09 AM | Location : United States







Related Discussions:- Level of significance, Assignment Help, Ask Question on Level of significance, Get Answer, Expert's Help, Level of significance Discussions

Write discussion on Level of significance
Your posts are moderated
Related Questions
how do i determine the 40th percentile in an ogive graph

In recent years a number of calculators are available for doing statistical calculations over and above the usual addition, subtraction, multiplication and division. The fx-82 mode

BCBSRI was able to reduce MSD related Workers Compensation cases with lost workdays by implementing a New Ergonomic Program in March 2000 and increasing workstation evaluations. Ex

Weighted Harmonic Mean Weighted Harmonic Mean is calculated with the help of the following formula: WHM Case

As we stated above, we start factor analysis with principal component analysis, but we quickly diverge as we apply the a priori knowledge we brought to the problem. This knowled

Ask queFrom these studies, which of the following may be considered a variable that can have a probability distribution? [I] Percentage of Sub-Saharan Africans that smoke [II] Perc

Poisson Distribution The poisson Distribution  was discovered  by French mathematician simon  denis  poisson. It is a discrete probability distribution. Meaning : In bi

A. Compute descriptive statistics for each stock and the S&P 500. Comment on your results. Which stocks are most volatile?

Asymmetric proximity matrices Immediacy matrices in which the off-diagonal elements which are, in the i th row and j th column and the j th row and i th column, are not essent

In PCA the eigknvalues must ultimately account for all of the variance. There is no probability,'no hypothesis, no test because strictly speaking PCA is not a statistical procedure