Lagrange multipliertest, Advanced Statistics

The Null Hypothesis - H0:  There is autocorrelation

The Alternative Hypothesis - H1: There is no autocorrelation

Rejection Criteria: Reject H0 (n-s)R2 >641_Partial Autocorrelation Function1.png = (1515 - 4) x (0.01) = 15.11 > 9.49 (641_Partial Autocorrelation Function1.png)

1515 cases used, 4 cases contain missing values

Since 15.11 > 9.49 the chi-squared value with 4 lags (ET-1, ET-2, ET-3, and ET-4) there is evidence to suggest that we reject H0 meaning that there is no autocorrelation.    

The regression equation is

RESI1 = - 0.0011 + 0.000005 totexp - 0.000001 income + 0.000017 age + 0.00007 nk

        + 0.0085 ET-1 + 0.0070 ET-2 - 0.0284 ET-3 - 0.0074 ET-4

Predictor         Coef     SE Coef                 T      P

Constant       -0.00105     0.01375        -0.08  0.939

totexp          0.00000471  0.00006080   0.08  0.938

income        -0.00000082  0.00004314  -0.02  0.985

age              0.0000167   0.0003090     0.05  0.957

nk                0.000071     0.004785       0.01  0.988

ET-1             0.00847       0.02580         0.33  0.743

ET-2             0.00700       0.02584         0.27  0.786

ET-3           -0.02842       0.02587        -1.10  0.272

ET-4          -0.00743       0.02592         -0.29  0.774

As the T value decreases, the P value increases which is noticeable above due to the inclusions of lags. Most of the T values are now closer to 0 which shows that there is less reliability of the coefficient.  ET-3 will be included in a further regression analysis as it is significant with a value of -1.10, conversely ET-1, ET-2, ET-4 will be removed as they are insignificant with low T values.     

S = 0.0905514   R-Sq = 0.1%   R-Sq(adj) = 0.0%

The inclusion of lags has caused the r-squared to be really low at 0.1% which certainly suggests that the model is inadequate for explaining the Y variable. It also indicates that data points are distributed away from the line of best fit and that the independent variables are poor predictors for the dependent variable. The remaining percentage (99.9%) is the variation which is unknown.

 

Analysis of Variance

 

Source               DF         SS        MS     F      P

Regression        8    0.012127  0.001516  0.18  0.993

Residual Error  1506  12.348529  0.008200

Total                1514  12.360656

Source  DF    Seq SS

totexp   1  0.000029

income  1  0.000005

age       1  0.000011

nk         1  0.000000

ET-1      1  0.000903

ET-2      1  0.000544

ET-3      1  0.009961

ET-4      1  0.000673

Since the F value is small at 0.18 and the P value is high 0.993 it reveals that there is no relationship between the Y dependent variable and X independent variables. This indicates that as it is 0.18 it does not support the model and therefore the slopes are equal to 0.

Posted Date: 3/4/2013 6:39:55 AM | Location : United States







Related Discussions:- Lagrange multipliertest, Assignment Help, Ask Question on Lagrange multipliertest, Get Answer, Expert's Help, Lagrange multipliertest Discussions

Write discussion on Lagrange multipliertest
Your posts are moderated
Related Questions
The process of providing the numerical value for the population parameter on the basis of information gathered from a sample. If a single ?gure is computed for the unknown paramete

Multivariate data is the data for which each observation consists of the values for more than one random variable. For instance, measurements on the blood pressure, temperature an

Monty Hall problem : A apparently counter-intuitive problem in the probability which gets its name from the TV game show, 'Let's Make a Deal' hosted by the Monty Hall. On show a pa

Prevalence : The measure of the number of people in a population who have a certain disease at a given point in time. It c an be measured by two methods, as point prevalence and p

The tabulation of a sample of observations in terms of numbers falling below particular values. The empirical equivalent of the growing probability distribution. An example of such

Unequal probability sampling is the sampling design in which the different sampling units in the population have different probabilities of being included in sample. The differing

You have learned that there are 3 major central measures of any data set. Namely: mean, median, and mode. Which of the three, do the outliers affect the most?

A term commonly encountered in the application of the agglomerative hierarchical clustering techniques, where it refers to the 'tree-like' diagram illustrating the series of steps

Probability weighting is the procedure of attaching weights equal to inverse of the probability of being selected, to each respondent's record in the sample survey. These weights

Maximum likelihood estimation is an estimation procedure involving maximization of the likelihood or the log-likelihood with respect to the parameters. Such type of estimators is