Inside function and outside function, Mathematics

"Inside function" and "outside function : Generally we don't actually do all the composition stuff in using the Chain Rule. That can get little complexes and actually obscures the fact that there is a quick & easy way of remembering the chain rule which doesn't need us to think in terms of function composition.

Let's take the following function

1547_inside function.png

This function contain an "inside function" & an "outside function". The outside function is square root/ the exponent of  ½ based on how you desire to think of it and the inside function is the stuff that we're taking the square root of or raising to the  1 , again based o how you desire to look at it.

Then the derivative is,

1384_outside function2.png

Generally it is how we think of the chain rule.  We recognize the "inside function" & the "outside function". Then we differentiate the outside function leaving the inside function alone & multiply all of this by the derivative of the inside function.  General form of this is following,

370_inside function3.png

We can always identify the "outside function" in the examples below by asking ourselves how we would evaluate the function.  In the R(z) case if we were to ask ourselves what R(2)

is we would primary evaluate the stuff under the radical and then finally take the square root of thisresult. The square root is the last operation that we perform in the evaluation and this is also the outside function. The outside function will for all time be the last operation you would perform if you were going to evaluate the function.

Posted Date: 4/12/2013 3:50:53 AM | Location : United States







Related Discussions:- Inside function and outside function, Assignment Help, Ask Question on Inside function and outside function, Get Answer, Expert's Help, Inside function and outside function Discussions

Write discussion on Inside function and outside function
Your posts are moderated
Related Questions
Terminology related to division :   A good way to remedy this situation is to familiarise children with these concepts in concrete, contexts, to start with. For instance, if a chi

1. Which of the following is greater than 4.3 x 10^9 a. 2.1 x 10^9 b. 3.2 x 10^9 c. 5.3 x 10^9 d. 7.4 x 10^8 2. Which of the following is less than 6.5 x 10^-5 a. 1.4 x 10

#question.onstruct/draw geometric shapes with specific condition.

Evaluate the below given limit. Solution Note as well that we actually do have to do the right-hand limit here. We know that the natural logarithm is just described fo

RELATING ADDITION AND SUBTRACTION :  In the earlier sections we have stressed the fact that to help children understand addition or subtraction, they need to be exposed to various

how do you do algebra with division

Prove that the intercept of a tangent between two parallel tangents to a circle subtends a right angle at the centre. Since Δ ADF ≅ Δ DFC ∠ADF = ∠CDF ∴ ∠ADC = 2 ∠CDF

how to convert multiple integral into polar form and change the limits of itegration

Explain Fermats Last Theorem? How to solve problems under Fermats Last Theorem?

let R be a (noncommutative) ring. Given that a,b and a+b ? R are all units, prove that a^(-1)+b^(-1) is a unit