Illustration of a clipping window - raster graphics, Computer Graphics

Illustration of a Clipping window ABCD is placed as follows:

A (100, 10), B (160, 10, C (160, 40), D (100, 40)

By using Sutherland-Cohen clipping algorithm determine the visible portion of the line segments i.e. EF, GH and P1P2. E (50, 0), F (70, 80), G (120, 20), H (140, 80), P1 (120, 5), P2(180, 30).

2065_Illustration of a Clipping window - Raster Graphics.png

Figure: Example of Cohen Sutherland Line Clipping

At first identifying the line P1P2

INPUT: P1(120, 5),   P2(180, 30)

xL = 100,   xR = 160,    yB = 10,    yT = 40

x1  > xL then bit 1 of code -P1 = 0 C1 left = 0

x1  < xR then bit 2 of code -P1 = 0 C1 right = 0

y1 < yB then bit 3 of code -P1 = 1 C1 bottom = 1

 y1  < yT then bit 4 of code -P1 = 0 C1 top = 0

code -P1 = 0100,

x2  > xL then bit 1 of code -P1 = 0 C2 left = 0

x2  > xR  then bit 2 of code -P1 = 1 C2 right = 1

 y2  > y B then bit 3 of code -P1 = 0 C2 bottom = 0

y2  < yT then bit 4 of code -P1 = 0 C2 top = 0

 code -P2 = 0010.

Both code -P1 <> 0 and code -P2 <> 0

then P1P2 not totally visible

code -P1 AND code -P2 = 0000

therefore (code -P1 AND code -P2 = 0)

then line is not fully invisible.

As code -P <> 0

for  i = 1

{

C1 left (= 0) <> 1 then nothing is done. i = i + 1 = 2

}

code -P1 <> 0 and code -P2 <> 0

then P1P2 not totally visible.

code -P1 AND code -P2 = 0000

therefore (code -P1 AND code -P2 = 0)

then line is not fully invisible.

 for   i = 2

     {

C1 right (= 0) <> 1 then nothing is to be done. i = i + 1 = 2 + 1 = 3

}

code -P1 <> 0 and code -P2 <> 0 then P1P2 not totally visible.

code -P1 AND code -P2 = 0000

therefore, (code -P1 AND code -P2 = 0)

then the line is not fully invisible.

 for   i = 3

{

 C1 bottom = 1 then find intersection of P1P2 with bottom edge yB = 10

xB = (180-120)(10-5)/(30-5) + 120

=132

then P1 = (132,10)

 x1  > xL then bit 1 of code -P1 = 0   C1 left = 0

x1  < xR then bit 2 of code -P1 = 0   C1 right = 0

y1  = yB then bit 3 of code -P1 = 0   C1 bottom = 0

y1  < yT then bit 4 of code -P1 = 0   C1 top = 0

code -P1 = 0000

i = i + 1 = 3 + 1 = 4

}

code -P1 <> 0 but code -P2 <> 0

then P1P2 not totally visible.

code -P1 AND code -P2 = 0000

therefore, (code -P1 AND code -P2 = 0)

then line is not fully invisible.

As code -P1 = 0

Swap P1 and P2 along with the respective flags

P1 = (180, 30) P2 = (132, 10) code -P1 = 0010 code -P2 = 0000

C1 left = 0                         C2 left = 0

C1 right = 1                       C2 right = 0

C1 bottom = 0                  C2 bottom = 0

C1 top = 0                         C2 top = 0

Reset i = 1

for i = 1

{

C1 left (= 0) <> 1 then nothing is to be done. i = i + 1 = 1 + 1 = 2

}

code -P1 <> 0, and code -P2 <> 0

then P1P2 is not totally visible.

code -P1 AND code -P2 = 0000

therefore, (code -P1 AND code -P2 = 0)

then line is not fully invisible.

 for i = 2

{

 C1 right   = 1 then find out intersection of P1P2 with right edge xR = 160

yR = (30 - 5)(160 - 120)/(180 - 120) + 5

= 21.667

= 22 then P1 = (160, 22)

 x1  > xL then bit 1 of code -P1 = 0   C1 left = 0

x1  = xR then bit 2 of code -P1 = 0   C1 right = 0

y1  > yB then bit 3 of code -P1 = 0   C1 bottom = 0

y1  < yT then bit 4 of code -P1 = 0   C1 top = 0

 code -P1 = 0000, i = i + 1 = 2 + 1 = 3

}

As both code -P1 = 0 and code -P2 = 0 then the line segment P1P2 is completely visible.

Consequently, the visible portion of input line P1P2 is P'1P'2 where, P1 = (160, 22) and

P2 = (132, 10).

For the line EF

1)      The endpoint codes are allocated code:

code - E → 0101

code - F → 1001

2) Flags are allocated for the two endpoints:

Eleft = 1 (as x coordinate of E is less than xL)

Eright = 0,  Etop = 0 and Ebottom = 1

As the same,

Fleft = 1,  Fright = 0,  Ftop = 1 and Fbottom = 0

3) Because codes of E and F are both not equivalent to zero the line is not wholly visible.

4) Logical intersection of codes of E and F is not equivalent to zero. Consequently, we may avoid EF line and declare it as wholly invisible.

Identifying the line GH:

a) The endpoint codes are allocated:

code - G → 0000 and

code - H → 1000

b)   Flags are allocated for the two endpoints:

Gleft = 0,  Gright = 0,  Gtop = 0 and Gbottom = 0.

As the same,

Hleft = 0,  Hright = 0,  Htop = 1 and  Hbottom = 0.

c) Because, codes of G and H are both not equivalent to zero according to the line is not totally visible.

d)   Logical intersection of codes of G and H is equivalent to zero consequently we cannot specify it as completely invisible.

f)   Because, code - G = 0, Swap G and H with their flags and set i = 1

Implying   Gleft = 0,  Gright = 0,  Gtop = 1 and  Gbottom = 0.

Hleft = 0,  Hright = 0,  Htop = 0 and  Hbottom = 0.

The same as G → 1000 and H → 0000

6) Because, code - G <> 0 then

for i = 1,

{since Gleft = 0

i = i + 1 = 2

go to 3

}

The conditions 3 and 4 don't hold and so we can't declare line GH as completely visible or invisible.

for i = 2, {since Gright = 0

i = i + 1 = 3

go to 3

}

The conditions 3 and 4 don't hold and so we can't declare line GH as completely visible or invisible.

for i = 3, {since Gbottom = 0

i = i + 1 = 4

go to 3

}

The conditions 3 and 4 don't hold and so we can't declare line GH as completely visible or invisible.

for i = 4, {since Gtop = 1

Intersection along with top edge, as P(x, y) is found as given below:

Any of line passing via the points G, H and a point P(x, y) is given via y - 20 = {(180 - 20) /(140 - 120)}(x - 120) or, y - 20 = 3x - 360 or, y - 30 = -340

Because, the y coordinate of every point on line CD is 40, consequently we put y = 40 for the point of intersection P(x, y) of line GH along with edge CD.

40 - 3x = -340 or, - 3x = - 380

Or else x = 380/3 = 126.66 ≈ 127

Consequently, the point of intersection is P (127, 40). We allocate code to it.

Because, the point lays on edge of the rectangle hence the code allocated to it is 0000. Here, we allocate G = (127, 40); i = 4 + 1 = 5. State 3 and 4 are again checked. Because, codes G and H are both are equivalent to 0, hence, the line among H(120, 20) and G(127, 40) is wholly visible.

Posted Date: 4/3/2013 3:09:42 AM | Location : United States







Related Discussions:- Illustration of a clipping window - raster graphics, Assignment Help, Ask Question on Illustration of a clipping window - raster graphics, Get Answer, Expert's Help, Illustration of a clipping window - raster graphics Discussions

Write discussion on Illustration of a clipping window - raster graphics
Your posts are moderated
Related Questions
Radiosity - Polygon Rendering & Ray Tracing Methods Radiosity simulates the diffuse propagation of light begin at the light sources. Because global illumination is an extremel

explain cohen sutherland line clipping algorithm


Question: (a) After having worked for several years as a graphic designer you decide to start a company of your own; MediaDesign ltd. The most valuable asset of a company is i


Implement displacement mapping and bump mapping on a sphere. The displacement can be whatever your choice. The bump map can be whatever your choice as well.

Put the system of a geometric data table for a 3d rectangle. Solution : Vertex Table Edge Table Polygon Surface Table

Three Sub-Fields of Computer Simulation Computer simulation is the electronic equivalent of this kind of role playing and it functions to drive synthetic environments and virt

What is view distance?  The view plane normal vector is a directed line segment from the view plane to the view reference point. The length of this directed line segment is ref

Referential Links: A third type of link is a referential link. It is associated to the associative link. Quite than representing a relationship among two related ideas, a referent