If tanx+secx=sqr rt 3, 0
Ans) sec^{2}x=(√3-tanx)^{2}
1+tan^{2}x=3+tan^{2}x-2√3tanx
2√3tanx=2
tanx=1/√3
x=30degree
squaring both the sides,tan2x + sec2x +2tanxsecx = 3put sec^2x = tan2x +1and take 2tanx common,2tanx(tanx+sec)=2sqrrt3(tanx)=1therefore tanx = 1/rt3x=30