If tanA+sinA=m and tanA-sinA=n, show that m^{2}-n^{2} = 4√mn
Ans: TanA + SinA = m TanA - SinA = n.
m^{2}-n^{2}=4√mn.
m^{2}-n^{2}= (TanA + SinA)^{2}-(TanA - SinA)^{2}
= 4 TanA SinA
RHS 4√mn = 4
= 4 sin^{2}A/cos^{2} A = 4Tan A sin A
m2-n2=4√mn