Horizontal curves - geometric design of roads, Civil Engineering

Horizontal Curves:

When a vehicle of mass m moves on a curve of radius R with a speed of v (m/sec) (as shown in Figure 1) it is subjected to a centrifugal force equal to:

mv2/   R

1809_Horizontal Curves - geometric design of roads.png

Figure: Forces Acting on a Vehicle on a Curve

where  m = Mass of the vehicle,

v = Speed of the vehicle in metres/sec,

R = Radius of the curve in metres,

g = Acceleration due to gravity (9.81m/sec2),

P = Side friction force resisting the centrifugal force = N µ,

N = Normal force,

µ = Coefficient of lateral friction,

α = Angle of super-elevation, and

e = Rate of superelevation, tan α.

This is counteracted by the coefficient of lateral friction (μ) and the amount by which the road is raised (super-elevation, e). It can be shown that

v2/ gR = e + μ

Expressing v as V in Km/hr,

V2/127 R= e + μ

or        R = V2/127 (e + μ)

The maximum comfortable value of e is 7 per cent (e = 0.07), and μ = 0.15.

Thus,  R =      V2/127 (0.07 + 0.15) = 0.0357 V2

For example, if a vehicle negotiates a National Highway (designed for V = 100 km/hr),

R = 0.0357 × 1002 = 357 or say 360 m.

In India, the actual value of the super-elevation to be provided on a curve is calculated on the assumption that it should counteract the centrifugal force developed at three-fourths the design speed. Thus,

V 2/127 R = e + μ

Putting μ = 0

V2/127 R= e

∴          e = (0.75 V) 2/127 R = V2/225 R

Thus,  R =V2/225 e

The road has a normal camber (1.5 to 2.5 per cent depending upon the type of surface). If this value is substituted in the above equation, the value of the radius beyond which no superelevation is required is obtained. Thus, on a black-topped road with a camber of 2.5%, and a design speed of 100 Km/hr, the minimum radius beyond which no super- elevation is required is:

 R =   100 × 100/225 × 0.025 = 1777 m, or say 1800 m

Posted Date: 1/22/2013 2:31:48 AM | Location : United States

Related Discussions:- Horizontal curves - geometric design of roads, Assignment Help, Ask Question on Horizontal curves - geometric design of roads, Get Answer, Expert's Help, Horizontal curves - geometric design of roads Discussions

Write discussion on Horizontal curves - geometric design of roads
Your posts are moderated
Related Questions
Pressure at Any Point on the Surface of a Horizontal Plane  Fluid pressure is the same at any point on the horizontal plane because: 1.  The fluid specific weight is the sam


Storm water flows at a depth of 4 ft in the natural channel as shown in the figure. The channel has a slope of 0.0l ft/ft and n = 0.025. 1. Determine the flow area:

Q. Design features of major bridge? Important design features of major bridge projects should be tested and finalised by hydraulic model studies. Bridge waterway, shape, length

1 advantages and disadvantages of rise and fall methodes

metal sizes required and adopted question #Minimum 100 words accepted#

Question Geotechnical Instrumentation is often employed for monitoring state of reclamation . From time to time two piezometers are installed inside same borehole. What is mai

Determine the meaning of Prestressed Concrete It is a type of concrete in which permanent internal stresses of  a suitable nature, magnitude and distribution are intentionally

Q. Necessity of pile tip cover for rock-socketed H-piles? In current practice concrete cover is generally provided at the pile tips of pre-bored H-piles socketed in rock. The o