Homogeneous differential equation, Mathematics

Assignment Help:

Assume that Y1(t) and Y2(t) are two solutions to (1) and y1(t) and y2(t) are a fundamental set of solutions to the associated homogeneous differential equation (2) so,

Y1 (t) - Y2 (t) is a solution to (2) and it can be written as

Y1 (t ) - Y2 (t ) =  c1 y1 (t ) + c2 y2 (t)

Note the notation used now. Capital letters considered as solutions to (1) while lower case letters considered as to solutions to (2. It is a fairly common convention while dealing with non-homogeneous differential equations.

This theorem is simple enough to prove thus let's do that. To prove this Y1(t) - Y2(t) is a solution to (2) all we require to do is plug this in the differential equation and check this.

(Y1 (t ) - Y2 (t ))'' + p(t) (Y1 (t ) - Y2 (t ))' + q(t) (Y1 (t ) - Y2 (t )) = 0

Y''1 + p(t) Y'1 + q(t) Y1 - (Y''2 + p(t) Y'2 + q(t) Y2) = 0

g(t) - g(t) = 0

0 = 0

We utilized the fact that Y1(t) and Y2(t) are two solutions to (1) into the third step. Since they are solutions to (1) we know as

Y''1 + p(t) Y'1 + q(t) Y1 = g(t)

Y''2 + p(t) Y'2 + q(t) Y2 = g(t)

Therefore, we were capable to prove that the difference of the two solutions is a solution to (2).

Proving as,

Y1 (t) - Y2 (t) = c1 y1 (t ) + c2 y2 (t) is even easier.

As y1(t) and y2(t) are a fundamental set of solutions to (2) we identify that they form a general solution and thus any solution to (2) can be written as,

Y (t) = c1 y1 (t ) + c2 y2 (t)

Well, Y1(t) - Y2(t) is a solution to (2), as we've illustrated above, thus it can be written as,

Y1 (t) - Y2 (t) = c1 y1 (t ) + c2 y2 (t)

Thus, what does this theorem do for us? We can utilize this theorem to write down the type of the general solution to (1). Let's assume that y(t) is the general solution to (1) and that YP(t) is any solution to (1) which we can get our hands on. After that using the second part of our theorem as,

y(t) - Yp(t) = c1 y1 (t) + c2 y2(t)

Here y1(t) and y2(t) are a fundamental set of solutions for (2). So solving for y(t) provides,

y(t) = c1 y1 (t) + c2 y2(t) + Yp(t)

We can here call,

yc= c1 y1 (t ) + c2 y2 (t)

The complementary solution and YP(t) a specific solution. The general solution to a differential equation can after that be written as,

y(t) = yc + Yp(t)

Here, to solve a nonhomogeneous differential equation, we will require solving the homogeneous differential equation, (2), that for constant coefficient differential equations is pretty simple to do, and we'll require a solution to (1).

It seems to be a circular argument. So as to write down a solution to (1) we require a solution. Though, this isn't the problem that this seems to be. There are ways to get a solution to (1).

They just won't, in common, be the general solution. Actually, the next two sections are devoted to accurately that, finding a particular solution to a non-homogeneous differential equation.

There are two general methods for determining particular solutions: Undetermined Coefficients and Variation of Parameters. Both have their disadvantages and advantages as you will see in the subsequent couple of sections.


Related Discussions:- Homogeneous differential equation

Finding absolute extrema, Finding Absolute Extrema : Now it's time to see ...

Finding Absolute Extrema : Now it's time to see our first major application of derivatives.  Specified a continuous function, f(x), on an interval [a,b] we desire to find out the

Calculate the regular monthly payments, A washing machine, cash price $ 850...

A washing machine, cash price $ 850 is available on the following terms: A deposit of $ 100 followed by equal payments at the end of each month for the next 18 months, if intere

Prove that ac2 =ab2 + bc2+2bcxbd, If ABC is an obtuse angled triangle, obtu...

If ABC is an obtuse angled triangle, obtuse angled at B and if AD⊥CB Prove that AC 2 =AB 2 + BC 2 +2BCxBD Ans:    AC 2 = AD 2 + CD 2 = AD 2 + (BC + BD) 2 = A

Find out the absolute extrema for function and interval, Find out the absol...

Find out the absolute extrema for the given function and interval.  g (t ) = 2t 3 + 3t 2 -12t + 4 on [-4, 2] Solution : All we actually need to do here is follow the pr

Example of optimization , A piece of pipe is carried down a hallway i.e 10 ...

A piece of pipe is carried down a hallway i.e 10 feet wide.  At the ending of the hallway the there is a right-angled turn & the hallway narrows down to 8 feet wide. What is the lo

Co-prime positive integers, A group of 5 people are going to meet weekly at...

A group of 5 people are going to meet weekly at the library for 4 weeks. Every week, two people are selected at random to speak. Every person may speak in multiple weeks, but no pa

Define period, Q. Define Period, Amplitude and Phase Shift? Ans. P...

Q. Define Period, Amplitude and Phase Shift? Ans. Period, amplitude and phase shift are used when describing a sinusoidal curve The period of a function is the smallest

Linear programming, #question.areas of applications of linear program mes t...

#question.areas of applications of linear program mes to solution to engineering problems.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd