Harmonic mean, Mathematics

If a, b and c are in harmonic progression with b as their harmonic mean then,

= 2003_harmonic mean.png

This is obtained as follows. Since a, b and c are in harmonic progression, 1/a, 1/b and 1/c are in arithmetic progression. Then,

        2272_harmonic mean1.png

This can be written as

1142_harmonic mean2.png

On cross multiplication we obtain

         2ac=b(a + c)

That is, b = 263_harmonic mean3.png

The second proposition we are going to look at in this part is: If A, G and H are the arithmetic, geometric and harmonic means respectively between two given quantities a and b then G2 = AH. The explanation is given below.

We know that the arithmetic mean of a and b is  605_harmonic mean4.png and it is given that this equals to A.

Similarly G2 = ab and H  = 1894_harmonic mean5.png  
The product of AH = 1369_harmonic mean6.png = ab. This we observe is equal to G2.

That is, G2 = AH, which says that G is the geometric mean between A and H.

Example 1.5.12

Insert two harmonic means between 4 and 12.

We convert these numbers into A.P. They will be 1/4 and 1/12. Including the two arithmetic means we have four terms in all. We are given the first and the fourth terms. Thus,

         T0      =       a = 1/4 and

         T4      =       a + 3d = 1/12

Substituting the value of a = 1/4 in T4, we have 

         1/4 + 3d     = 1/12

         3d             = 1/12 - 1/4 = - 1/6

         d               = -1/18

Using the values of a and d, we obtain T2 and T3.

         T2      =       a + d = 1/4 + (-1/18)

                                     = 1/4 - 1/18 = 7/36

         T3      =       a + 2d =  1/4 + 2.(-1/18)

                                      =  1/4 - 2/18

                                      =  1/4 - 1/9

                                      =   5/36

The reciprocals of these two terms are 36/7 and 36/5.

Therefore, the harmonic series after the insertion of two means will be 4, 36/7, 36/5 and 12.

Posted Date: 9/13/2012 4:49:27 AM | Location : United States

Related Discussions:- Harmonic mean, Assignment Help, Ask Question on Harmonic mean, Get Answer, Expert's Help, Harmonic mean Discussions

Write discussion on Harmonic mean
Your posts are moderated
Related Questions
Describe differance between Mean vs. Mode ? Every set of numbers or data has a mean and a mode value. The mean is the average value of all the numbers in the set. The mode is t

Sharon purchased six adult movie tickets. She spent $43.50 on the tickets. How much was each ticket? To ?nd out the price of each individual ticket, you should divide the total

let setM={X,2X,4X} for any numberX .if average (arthemetic mean)of the number in setM is 14.what is the value of X?

All the number sets we have seen above put together comprise the real numbers. Real numbers are also inadequate in the sense that it does not include a quantity which i

The population of a particular city is increasing at a rate proportional to its size. It follows the function P(t) = 1 + ke 0.1t where k is a constant and t is the time in years.

Dot Product- Vector The other topic for discussion is that of the dot product.  Let us jump right into the definition of dot product. There is given that the two vectors a

10 statements must be shown to be logically equivalent to the Statement the nxn matrix is invertible.

The ratio of gasoline to oil needed to run a chain-saw is 16:1. If you have 3.5 mL of oil, how many millilitres of gasoline must you add to get the proper mixture?

Explain the Common Forms of Linear Equations ? An equation whose graph is a line is called a linear equation. Here are listed some special forms of linear equations. Why should