Geometric progression (g.p.), Mathematics

Learning geometric progression vis-á-vis arithmetic progression should make it easier. In geometric progression also we denote the first term by 'a' but a  basic difference from A.P. is that instead of common difference we have common ratio 'r'. Like d, r remains constant whenever the ratio of any two consecutive terms is computed. The terms of a G.P. are

                   a, ar, ar2, ar3, ar4, ................, arn - 1  

That is,         T1     =     a

                   T2     =     ar

                   T3     =     ar2

                   :                :
                   :                :

                   Tn     =     arn - 1

This is similar to A.P. We take an example to become more familiar with this.


It is known that the first term in G.P. is 3 and the common ratio r is 2. Find the first three terms of this series and also the nth term.

We know that the first term is given by

                   T1     = a   = 3

                   T2     = ar   = 3.2     = 6

                   T3     = ar2  = 3.2.2 = 12

The nth term is given by  Tn  = arn-1  = 3(2)n-1

Posted Date: 9/13/2012 4:26:09 AM | Location : United States

Related Discussions:- Geometric progression (g.p.), Assignment Help, Ask Question on Geometric progression (g.p.), Get Answer, Expert's Help, Geometric progression (g.p.) Discussions

Write discussion on Geometric progression (g.p.)
Your posts are moderated
Related Questions
The two sides of a triangle are 17 cm and 28 cm long, and the length of the median drawn to the third side is equal to 19.5 cm. Find the distance from an endpoint of this median to

what are the dimensions of the box that can be made if squares of x cm by x cm is cut off from 20cm by 20cm square paper

A photographer decides to decrease a picture she took in sequence to fit it within a certain frame. She requires the picture to be one-third of the area of the original. If the ori

The sum of areas of two squares is 468m 2  If the difference of their perimeters is 24cm, find the sides of the two squares. Ans:    Let the side of the larger square be x .

how to remember the formulas of this topic

Find out the center of mass for the region bounded by y = 2sin (2x), y =0 on  the interval  [0 , Π/2] Solution Here is a sketch (diagram) of the region along with the cent

1. What is the value of Φ(0)? 2. Φ is the pdf for N(0, 1); calculate the value of Φ(1.5). 3.  Suppose X ~ N(0, 1). Which, if either, is more likely: .3 ≤ X ≤ .4, or .7 ≤ X ≤

The order of a differential equation is the huge derivative there in the differential equation. Under the differential equations as listed above in equation (3) is a first order di