Game:adding numbers—lose if go to 100 or over (win at 99), Game Theory

GAME Adding Numbers—Lose If Go to 100 or Over (Win at 99)

 
In the second ver- sion, two players again take turns choosing a number be- tween 1 and 10 (inclusive), and a cumulative total of their choices is kept. This time, the player who causes the total to equal or exceed 100 is the loser.

The first pair starts by choosing numbers more or less at random, until the total drifts into the 90s and the player with the next turn clinches a win by taking the total to 99. The second (or maybe third) time you play, when the total gets somewhere in the 80s, one of that pair will realize that she wins if she takes the total to 88. When she does that, the other will (probably) realize that she has lost, and as she concedes, the rest of the class will realize it, too. The next pair will quickly settle into subgame-perfect play as in the first version. Eventually everyone will have figured out that starting at 0 (being the first mover) guarantees not a win but a loss. In this version of the game, it is better to go second: let the first player choose any number and then say 11 minus what the other says. Here, the second player takes the total succes- sively to 11, 22, . . ., 77, 88, 99; the first player must then take the total to 100 (or more) and lose. You can hold a brief discussion comparing the two versions of the game; this helps make the point about order advantages in different games.

Posted Date: 9/27/2012 1:29:20 AM | Location : United States







Related Discussions:- Game:adding numbers—lose if go to 100 or over (win at 99), Assignment Help, Ask Question on Game:adding numbers—lose if go to 100 or over (win at 99), Get Answer, Expert's Help, Game:adding numbers—lose if go to 100 or over (win at 99) Discussions

Write discussion on Game:adding numbers—lose if go to 100 or over (win at 99)
Your posts are moderated
Related Questions
a) This you just have to list all the attributes for the program. i.e. unique id's for puzzle pieces, attributes for the puzzle like a data field for the number of edges, methods t

The Prisoners’ Dilemma Game The idea that tacit cooperation can be sustained in an ongoing relationship is very simple and students easily accept it. The formal analysis

Discussion in the preceding section suggests that if we want to measure a given hnction belonging to a simultaneous-equations model, the hnction must be fairly stable over the samp

Tower defense - is a subgenre of real-time strategy games. The goal of tower defense games is to try to stop enemies from crossing a map by building towers which shoot at them as t

(a) A player wins if she takes the total to 100 and additions of any value from 1 through 10 are allowed. Thus, if you take the sum to 89, you are guaran- teed to win; your oppone

Rollback equilibrium       (b) In the rollback equilibrium, A and B vote For while C and D vote Against; this leads to payoffs of (3, 4, 3, 4). The complete equil

Scenario The French thinker, Jean Jacques Rousseau, presented the subsequent state of affairs. 2 hunters will either jointly hunt a stag (an adult deer and rather massive meal)

Computer Game Zenda This game was invented by James Andreoni and Hal Varian; see their article, "Pre-Play Contracting in the Prisoners 'Dilemma".The paper also contains some co

A payoff offerd as a bequest for someone partaking in some activity that doesn't directly provide her with profit. Often, such incentives are given to beat the ethical hazard drawb

GAME 5 All-Pay Acution of $10 Everyone plays. Show the students a $10 bill, and announce that it is the prize; the known value of the prize guarantees that there is no winer’s